English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52492580      Online Users : 737
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/150261


    Title: 使用深度學習識別現代畫中的藝術風格-以台灣鄉土風格繪畫為例
    Identifying Artistic Styles in Modern Painting Using Deep Learning- Taiwan's local style painting as an Example
    Authors: 陳亦霖
    Chen, I-Lin
    Contributors: 彭彥璁
    Peng, Yan-Tsung
    陳亦霖
    Chen, I-Lin
    Keywords: 深度學習
    圖像分類
    台灣鄉土風格繪畫
    資料擴增
    Deep learning
    Image classification
    Taiwan's local style painting
    Data augmentation
    Date: 2024
    Issue Date: 2024-03-01 14:12:04 (UTC+8)
    Abstract: 繪畫風格分類一直是一個活躍的研究領域,但對於國內繪畫風格透過深度學習分析的研究相當稀少,故本研究旨在透過機器學習協助現代藝術中有定義的國別風格主義分類與台灣鄉土繪畫風格一同進行分類探討,其中台灣鄉土繪畫樣本為本研究所收集從1860年代至1970年代這段時期內台灣知名前輩創作的本土鄉情藝術作品,以此做為台灣鄉土藝術風格繪畫的指標,期間台灣知名畫家有陳澄波、廖繼春、李梅樹、楊三郎、李石樵等人的繪畫作品,本研究稱為台灣鄉土風格繪畫,與WikiArt之現代藝術中可稱為國別的藝術主義風格一同進行監督式學習,並探討擴增資料集、訓練資料特性及分類器學習模效能之評分及人文歷史角度探討關聯。在本文中會利用常見的4種深度學習模型AlexNet、VGG19、GoogleNet、ResNet152,用以辨識和分類藝術風格,藝術風格分為美國寫實主義(American Realism)、日本主義(Japonism)、墨西哥壁畫運動(Muralism) 、印度空間畫(Indian Space painting)、巴洛克復興風格(Neo-baroque)、台灣鄉土藝術(Tw-Local) 等6種不同類型,透過資料集擴增處理及各模型選擇之實驗,最終以ResNet152模型分類準確率達到93%之表現,說明本研究定義的分類藝術風格可透過模型加以分類,並透過人文歷史角度探討深度學習模型所識別的繪畫特徵關聯做說明。
    Painting style classification has always been an active research field, but research on domestic painting styles analyzed through deep learning is rare, This study aims to contribute to the classification of national mannerism in modern art by exploring the classification of Taiwanese vernacular painting style through machine learning. Among the aspects discussed, the samples of Taiwanese local paintings are local nostalgic works of art collected by the Institute from the 1860s to the 1970s, created by well-known predecessors in Taiwan, this can be taken as an indicator of Taiwan's local art style painting,during this period, well-known Taiwanese painters Chen Chengbo, Liao Jichun, Li Meishu, Yang Sanlang, Li Shiqiao and others produced their paintings. This study titled ‘Tw-Local style painting’ employs supervised learning to analyze what may be referred to as national artistic styles found in WikiArt's Modern Art.It also discuss the relationship between augmented data sets, training data characteristics and classifier learning model performance scores from a humanistic and historical perspective. In the text, we will use the four common deep learning models AlexNet, VGG19, GoogleNet, ResNet152. These models will be used to identify and classify artistic styles, which are divided into American Realism, Japonism, Muralism, Indian Space painting, and Neo-baroque, Taiwan local art (Tw-Local) and other 6 different types.The experiments involve data augmentation processing and selection of each model. Finally, using the ResNet152 model, the classification accuracy rate reached 93%. This result indicates that the categorical artistic styles defined in this study can be classified through the model and explains the correlation of painting features identified by the deep learning model from the perspective of humanities and history.
    Reference: [1] K. Richman-Abdou, "What is Modern Art? Exploring the Movements That Define the Groundbreaking Genre," MY MODERN MET, 2022. https://mymodernmet.com/what-is-modern-art-definition/.
    [2] C. Ives, "Japonisme," New York: The Metropolitan Museum of Art, 2004. http://www.metmuseum.org/toah/hd/jpon/hd_jpon.htm.
    [3] 陳曼華, 藝術與文化政治:戰後台灣藝術的主體形構, 國立交通大學, 2016.
    [4] "Wikiart," https://www.wikiart.org/.
    [5] "American Realism," https://reurl.cc/RyRbLZ.
    [6] "Japonism," https://reurl.cc/RyRbLZ.
    [7] "Muralism," https://reurl.cc/ka9Lmd.
    [8] "Indian Space painting," https://reurl.cc/x6eEdz.
    [9] "Neo-baroque," https://reurl.cc/NyOZze.
    [10] Y. LeCun., Y. Bengio.,G. Hinton., "Deep learning," Nature, no. 521(7553), p. 436–444, 2015.
    [11] 簡秀枝, 台灣前輩油畫家市場之研究—以陳澄波、廖繼春、李梅樹、楊三郎、李石樵之油畫市場行情為例, 國立臺灣師範大學, 2007.
    [12] 倪再沁, "西方美術.台灣製造-台灣現代美術的批判," 雄獅美術, no. 242, pp. 132-133, 1991.
    [13] 劉聖秋, 70年代台灣鄉土美術之研究, 國立屏東師範學院, 2002.
    [14] 陸蓉之, "台灣地區當代藝術本土風格語彙的衍變," in 中華民國美術思潮研討會論文集, 台北市立美術館, 1992.
    [15] “臺北市立美術館,” https://www.tfam.museum/index.aspx?ddlLang=zh-tw.
    [16] “楊三郎美術館,” https://yangsanlang.com.tw/collection/.
    [17] “國立台灣美術館,” https://ntmofa-collections.ntmofa.gov.tw/Default.aspx.
    [18] E. Ahmed., M. Marian., B. Liu., K. Diana., E. Mohamed., The Shape of Art History in the Eyes of the Machine, arXiv, 2018.
    [19] A. Krizhevsky., I. Sutskever., G. E. Hinton., ImageNet Classification with Deep Convolutional Neural Networks, ACM, 2012.
    [20] S. Kumar., A. Tyagi., T. Sahu., P. Shukla., A. Mittal., Indian Art Form Recognition Using Convolutional Neural Networks, IEEE, 2018.
    [21] D. Kvak., Leveraging Computer Vision Application in Visual Arts: A Case Study on the Use of Residual Neural Network to Classify and Analyze Baroque Paintings, arXiv, 2022.
    [22] V. H. Phung., E. J. Rhee., A High-Accuracy Model Average Ensemble of Convolutional Neural Networks for Classification of Cloud Image Patches on Small Datasets, Hanbat National University, 2019.
    [23] “維基百科: Overfiting說明,” https://reurl.cc/x6o2mN.
    [24] K. Simonyan., A. Zisserman., Very Deep Convolutional Networks for Large-Scale Image Recognition, arXiv, 2014.
    [25] C. Szegedy., W. Liu., Y. Jia,P. Sermanet., S. Reed.,D. Anguelov.,A. Rabinovich., Going Deeper with Convolutions, IEEE, 2015.
    [26] K. He.,X. Zhang.,S. Ren.,J. Sun., Deep Residual Learning for Image Recognition, IEEE, 2016.
    [27] 李謦伊, “卷積神經網絡 CNN 經典模型 — LeNet、AlexNet、VGG、NiN with Pytorch code,” Medium, 2020. https://reurl.cc/q06LpE.
    [28] C. Shorte.,T. M. Khoshgoftaar., A Survey on Image Data Augmentation for Deep Learning. Journal of Big Data, SpringerOpen, 2019.
    [29] V. d. Maaten., G. Hinton., "Visualizing data using t-SNE," Journal of machine learning research, vol. 9, no. 11, 2008.
    [30] G. Hinton., E. Geoffrey., Roweis., T. Sam, "Stochastic neighbor embedding.," Advances in neural information processing systems., pp. 857-864, 2002.
    [31] 謝東山, “臺灣鄉土美術的質與量,” 臺灣美術期刊, 編號 107, p. 6~8, 2017.
    [32] 葉國新, 傳統與創新--由鄉土藝術出發探討繪畫創作的表現, 國立臺灣師範大學, 2005.
    [33] R. R. Selvaraju.,M. Cogswell.,A. Das,R. Vedantam.,D. Parikh.,D. Batra., Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization, IEEE, 2017.
    [34] “維基百科:浮世檜,” https://reurl.cc/Nyngm5.
    [35] “維基百科:墨西哥壁畫運動,” https://reurl.cc/8NzRZo.
    [36] “維基百科:巴洛克藝術,” https://reurl.cc/r6o2Gb.
    [37] "台灣鄉土美術運動," 維基百科, https://reurl.cc/gaNz6R.
    [38] 許綾讌, 舊園情懷 ─ 台灣鄉土古厝水墨畫之研究, 國立臺灣藝術大學, 2010.
    Description: 碩士
    國立政治大學
    資訊科學系碩士在職專班
    109971022
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0109971022
    Data Type: thesis
    Appears in Collections:[資訊科學系碩士在職專班] 學位論文

    Files in This Item:

    File Description SizeFormat
    102201.pdf5324KbAdobe PDF2View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback