English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52553529      Online Users : 779
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/150201


    Title: 臺灣疫情期間的通貨膨脹率預測 - 分量因子模型的應用
    Taiwan Inflation Rate Forecast During Covid-19 Pandemic - An Application of Quantile Factor Model
    Authors: 郭彥伶
    Kuo, Yen-Ling
    Contributors: 徐士勛
    Hsu, Shih-Hsun
    郭彥伶
    Kuo, Yen-Ling
    Keywords: 通貨膨脹率預測
    擴散指標分析法
    主成分分析法
    分量因子分析法
    Inflation forecast
    Diffusion index analysis
    Principal component analysis
    Quantile factor analysis
    Date: 2023
    Issue Date: 2024-03-01 13:51:44 (UTC+8)
    Abstract: 本文使用Chen et al. (2021)提出的分量因子分析法 (quantile factor analysis),從台灣經濟新報資料庫(TEJ)蒐集89個與消費者物價直接或間接相關的時間序列資料,從中萃取分量因子 (quantile factor),進行疫情期間(2020年到2022年)臺灣的通貨膨脹率預測。我們比較AR模型 (Autoregression model, AR)、共同因子模型 (factor model) 以及分量因子模型 (quantile factor model) 在疫情期間的預測績效,發現無論是通膨走升或是回落時期,分量因子模型的預測能力皆優於傳統的AR模型及共同因子模型。此外,我們計算各模型的預測分數 (predictive score) ,發現共同因子模型以及分量因子模型的預測分數普遍高於AR模型,顯示因子模型可以提供更精確的通膨預測。
    另外,若將89個變數依照其特性區分為物價相關變數、實質面變數與金融面變數後,再分別估計各類別的因子,我們發現能進一步提升分量因子模型的預測績效。此外,若進一步計算分量因子在疫情期間的預測貢獻度,我們發現分量因子平均而言能提升約7%的模型預測能力,顯示分量因子在疫情期間可以良好的捕捉我國通膨的未來趨勢,改善傳統AR模型的預測能力。
    This paper aims at forecasting Taiwan Inflation rate during the pandemic period (2020 to 2022) using quantile factor model proposed by Chen.et al (2021). We collected 89 time series data related to consumer prices from Taiwan Economic Journal Database (TEJ) and extracted quantile factors to make predictions. We compared forecast performances of AR model, common factor model and quantile factor model, and found that the predictive power of quantile factor model was better than that of AR model and common factor model, whenever the inflation rates was rising or falling. In addition, we found that the predictive scores of common factor model and quantile factor model were generally higher than that of AR model, showing that factor model can provide more accurate inflation forecasts.
    Furthermore, we found that if the 89 variables are divided into price-related variables, real variables and financial variables, the predictive performance of quantile factor model can be further improved. Next, we calculated forecast contribution of quantile factors during pandemic, and found that quantile factors can improve forecasting power by about 7% on average, showing that quantile factors can well capture the future trend of inflation during the pandemic in Taiwan.
    Reference: 吳若瑋 (2015),「通貨膨脹率之預測」,《經濟論文》, 43(2), 253­285 。
    侯德潛與徐千婷 (2002),「我國通貨膨脹預測模型之建立」,《中央銀行季刊》,
    24(3), 9­40 。
    徐士勛、黃裕烈與徐之強 (2018),「台灣基本通膨估值 (UIG) 之建構與分
    析」,《中央銀行季刊》, 41(3), 29­58 。
    黃朝熙 (2007),「台灣通貨膨脹預測」,《中央銀行季刊》, 29(1), 5­30 。
    陳佩玗 (2013),「台灣地區短期通貨膨脹率之預測」,《中央銀行季刊》, 35(1),
    63­90 。
    葉盛與田慧琦 (2004),「台灣的物價情勢: 影響因素探析與計量實證模型應
    用」,《中央銀行季刊》, 26(4), 69­116 。
    楊麗芬與許玉雪 (2005),「臺灣地區消費者物價指數-單變量與多變量時間數列
    模式之比較分析」,《中國統計學報》, 43(3), 281­311 。
    Adrian, T., N. Boyarchenko, and D. Giannone (2019), “Vulnerable Growth,” American Economic Review, 109(4), 1263­1289.
    Amengual, D., and E. Sentana (2020), “Is a Normal Coplua the Right Copula?,”
    Journal of Business and Economics Statistics, 38(2), 350­366.
    Atkeson, A. , and L. E. Ohanian (2001), “Are Phillips Curves Useful for Forecasting Inflation?,” Federal Reserve Bank of Minneapolis Quarterly Review,
    25(1), 2–11.
    Bai, J. , and S. Ng (2002), “Determining the Number of Factors in Approximate
    Factor Models,” Econometrica, 70(1), 191­221.
    Bernanke, B. S., J. Boivin, and P. Eliasz (2005), “Measuring the Effects of Monetary Policy: A Factor­Augmented Vector Autoregressive (FAVAR) Approach,”
    The Quarterly Journal of Economics, 120(1), 387–422.
    Chen, L., J. J. Dolado, and J. Gonzalo (2021), “Quantile Factor Models,” Econmetrica, 89(2), 875­910.
    Connor, G., and R. A. Korajczyk (1986), “Performance Measurement With the
    Arbitrage Pricing Theory,” Journal of Financial Economics, 15, 373­394.
    Connor, G., and R. A. Korajczyk (1993), “A Test for the Number of Factors in the
    Approximate Factor Model,” Journal of Financial Economics, 48(4), 1263­
    1291.
    Granger, C. W. J. , and P. Newbold (1974), “Spurious Regression in Econometrics,”
    Journal of Econometrics, 2, 111­120.
    Meyler, A., G. Kenny, and T. Quinn (1998), “Forecasting Irish Inflation Using
    ARIMA Models,” Central Bank and Financial Services Authority of Ireland
    Technical Paper Series, 1998(3), 1­48.
    Mishkin, F. S. (1990), “What Does the Term Structure Tell Us About Future Inflation?,” Journal of Monetary Economics, 25, 77­95.
    Stock, J. H., and M. W. Watson (1999), “Forecasting Inflation,” NBER Working
    Paper, No. 7023.
    Stock, J. H., and M. W. Watson (2002), “Macroeconomics Forecasting Using Diffusion Indexes,” American Statistical Association Journal of Business and
    Economic Statistics, 20(2), 147­162.
    Stockton, D. J. , and J. E. Glassman (1987), “An Evaluation of the Forecast Performance of Alternative Models of Inflation,” The Review of Economics and
    Statistics, 69(1), 108-­117.
    Description: 碩士
    國立政治大學
    經濟學系
    110258015
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0110258015
    Data Type: thesis
    Appears in Collections:[經濟學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    801501.pdf1336KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback