政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/150164
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 114014/145046 (79%)
造訪人次 : 52049624      線上人數 : 675
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 資訊學院 > 資訊科學系 > 學位論文 >  Item 140.119/150164
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/150164


    題名: 運用知識圖於公務人員的課程推薦
    Course Recommendation for Civil Servant Based on Knowledge Graph
    作者: 謝政彥
    Hsieh, Cheng-Yen
    貢獻者: 沈錳坤
    Shan, Man-Kwan
    謝政彥
    Hsieh, Cheng-Yen
    關鍵詞: 課程推薦
    知識圖
    公務人員
    Course Recommendation
    Knowledge Graph
    Civil Servant
    日期: 2024
    上傳時間: 2024-03-01 13:40:16 (UTC+8)
    摘要: 公務人員為推動國家政策、提升國家競爭力,本職學能必須與時俱進。但公務人員每年在職研習的時間與次數有限,因此若能透過課程推薦技術,將可協助公務人員有效地選讀相關訓練課程。
    然而公務人員在數十年公務生涯中,會歷經不同服務機關、職等、職務等歷練,教育程度及年齡也會改變,因此課程推薦需考慮公務人員修課時背景,包括職務相關背景及影響喜好相關背景。而且一般成人學習的習慣是希望透過理解找到答案,因此課程推薦須具備可解釋性方能有效協助公務人員理解並進行選課決策。
    針對商品的推薦,現已有分別考慮情境背景或具備可解釋性的推薦技術。但較少有兩者兼具的研究。本研究提出一個運用知識圖的公務人員研習背景課程圖,並結合長短期記憶模型的推薦模型。此模型考量公務人員歷年的公務相關背景及個人人口統計背景。經實驗顯示本論文所提出的課程推薦模型,準確率極高且具有可解釋性。
    In order to promote national policies and enhance national competitiveness, civil servants must keep pace with the times in their professional skills. However, the opportunities for job training in terms of time and frequency are limited for civil servants each year. Therefore, if course recommendation technology could be utilized, it could assist civil servants in effectively selecting relevant training courses.
    Over the decades-long career of a civil servant, they will experience different service institutions, ranks, and positions. Their education level and age will also change. Therefore, course recommendations need to take into account the background of civil servants, including job-related background and demographic background that affects preferences. Moreover, course recommendations must be explainable to effectively assist civil servants in understanding and making course selection decisions.
    Currently there are recommendation techniques that consider context or are explainable for product recommendation, but there is little research to have both. This thesis proposes a Civil-servant Profile Course Graph based on knowledge graph and integrated with the LSTM recommendation model. The proposed model makes recommendation by taking the job-related background and personal demographic background of civil servants into account. Experiments show that the proposed approach is highly accurate and explainable.
    參考文獻: [1] L. Anitha, M. K. Devi, and P. A. Devi, A Review on Recommender System. International Journal of Computer Applications, Vol. 82, No. 3, 2013.
    [2] D. V. Bagul, and S. Barve, A Novel Content-based Recommendation Approach Based on LDA Topic Modeling for Literature Recommendation. IEEE 6th International Conference on Inventive Computation Technologies (ICICT), 2021.
    [3] Y. Cao, X. Wang, X. He, Z. Hu, and T. S. Chua, Unifying Knowledge Graph Learning and Recommendation: Towards a Better Understanding of User Preferences. The World Wide Web Conference, 2019.
    [4] R. Chen, Q. Hua, Y. S. Chang, B. Wang, L. Zhang, and X. Kong, A Survey of Collaborative Filtering-based Recommender Systems: From Traditional Methods to Hybrid Methods Based on Social Networks. IEEE Access, Vol. 6, 2018.
    [5] G. Durand, N. Belacel, and F. LaPlante, Graph Theory Based Model for Learning Path Recommendation. Information Sciences, Vol. 251, 2013.
    [6] D. B. Guruge, R. Kadel, and S. J. Halder, The State of the Art in Methodologies of Course Recommender Systems— A Review of Recent Research. Data, Vol. 6, No. 2, 2021.
    [7] Y. Hu, Y. Koren, and C. Volinsky, Collaborative Filtering for Implicit Feedback Datasets. IEEE 8th International Conference on Data Mining, 2008.
    [8] M. R. Islam, M. U. Ahmed, S. Barua, and S. Begum, A Systematic Review of Explainable Artificial Intelligence in Terms of Different Application Domains and Tasks. Applied Sciences, Vol. 12, No. 3, 2022.
    [9] U. Javed, K. Shaukat, I. A. Hameed, F. Iqbal, T. M. Alam, and S. Luo, A Review of Content-based and Context-based Recommendation Systems. International Journal of Emerging Technologies in Learning, Vol. 16, No. 3, 2021.
    [10] E. S. Khorasani, Z. Zhenge, and J. Champaign, A Markov Chain Collaborative Filtering Model for Course Enrollment Recommendations. 2016 IEEE International Conference on Big Data, 2016.
    [11] X. Luo, M. Zhou, Y. Xia, and Q. Zhu, An Efficient Non-negative Matrix-factorization-based Approach to Collaborative Filtering for Recommender Systems. IEEE Transactions on Industrial Informatics, Vol. 10, No. 2, 2014.
    [12] A. H. Nabizadeh, D. Goncalves, S. Gama, J. Jorge, and H. N. Rafsanjani, Adaptive Learning Path Recommender Approach Using Auxiliary Learning Objects. Computers & Education, Vol. 147, 2020.
    [13] A. H. Nabizadeh, J. P. Leal, H. N. Rafsanjani, and R. R. Shah, Learning Path Personalization and Recommendation Methods: A Survey of the State-of-the-art. Expert Systems with Applications, Vol. 159, 2020.
    [14] O. N. Osmanlı, A Singular Value Decomposition Approach for Recommendation Systems. Master's Thesis, Middle East Technical University, 2010.
    [15] A. Polyzou, A. N. Nikolakopoulos, and G. Karypis, Scholars Walk: A Markov Chain Framework for Course Recommendation. The 12th International Conference on Educational Data Mining, 2019.
    [16] S. Sharma, V. Rana, and M. Malhotra, Automatic Recommendation System Based on Hybrid Filtering Algorithm. Education and Information Technologies, Vol. 27, No. 2, 2022.
    [17] C. Shi, Y. Li, J. Zhang, Y. Sun, and S. Y. Philip, A Survey of Heterogeneous Information Network Analysis. IEEE Transactions on Knowledge and Data Engineering, Vol. 29, No. 1, 2016.
    [18] X. Wang, D. Wang, C. Xu, X. He, Y. Cao, and T. S. Chua, Explainable Reasoning over Knowledge Graphs for Recommendation. The AAAI conference on artificial intelligence, Vol. 33, No. 1, 2019.
    [19] M. Wijewickrema, V. Petras, and N. Dias, Selecting a Text Similarity Measure for a Content-based Recommender System: A Comparison in Two Corpora. The Electronic Library, Vol. 37, No. 3, 2019.
    [20] Y. Xian, Z. Fu, S. Muthukrishnan, G. De Melo, and Y. Zhang, Reinforcement Knowledge Graph Reasoning for Explainable Recommendation. The 42th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2019.
    [21] Y. Zhang, and X. Chen, Explainable Recommendation: A Survey and New Perspectives. Foundations and Trends® in Information Retrieval, Vol. 14, No. 1, 2020.
    [22] 陳雪雲,社區導向之積極公民身分學習-從非正規到非正式反思學習。中華民國成人暨終身教育學會編,非正規學習:151-182。北市:師大書苑,2005。
    描述: 碩士
    國立政治大學
    資訊科學系
    109753207
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0109753207
    資料類型: thesis
    顯示於類別:[資訊科學系] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    320701.pdf3129KbAdobe PDF35檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋