政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/149878
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 114205/145239 (79%)
造访人次 : 52611413      在线人数 : 851
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 資訊學院 > 資訊科學系 > 會議論文 >  Item 140.119/149878


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/149878


    题名: Study on Q-Learning and Deep Q-Learning in Urban Roadside Parking Space Search
    作者: 張宏慶
    Jang, Hung-Chin;Lee, Chun-Yee
    贡献者: 資訊系
    日期: 2022-12
    上传时间: 2024-02-16 15:36:37 (UTC+8)
    摘要: In recent years, most research on urban roadside parking space search has focused on improving the prediction of the vacancy of roadside parking spaces. One simple but expensive practice is setting up sensors in each parking space to provide drivers with realtime parking space information so drivers can find suitable parking spaces. Although providing realtime information on each parking space can help drivers when choosing a driving route, there is a possibility that other drivers take the parking space during the time of getting to the specific parking space. A better approach to the parking space search is to find a suitable parking area rather than specific parking spaces. Predicting the probability of an available parking area can reduce the time the vehicle lingers in search of a parking space. In this study, we proposed to use Deep Q-Learning with fewer sensors to solve the problem. Besides, we used LSTM (Long Short-Term Memory) and GRU (Gated Recurrent Unit) models to improve the accuracy in estimating the Q value of the Deep Q-learning. Finally, we compared the performance of Q-Learning and Deep Q-Learning using simulated traffic flow data.
    關聯: 2022 International Conference on Computational Science and Computational Intelligence (CSCI), American Council on Science and Education
    数据类型: conference
    显示于类别:[資訊科學系] 會議論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    1214.pdf756KbAdobe PDF98检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈