政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/149690
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113822/144841 (79%)
造訪人次 : 51772871      線上人數 : 592
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/149690


    題名: 以ESG為觀點探討產業園區營運績效與區位配置評估之研究
    Based on the Perspective of ESG: Performance Assessment of the Operation and Location-allocation of Industrial Parks in Taiwan
    作者: 高㬏婈
    Kao, Li-Lin
    貢獻者: 白仁德
    Pai, Jen-Te
    高㬏婈
    Kao, Li-Lin
    關鍵詞: 2050淨零轉型
    ESG
    績效評估
    資料包絡分析(DEA)
    非意欲產出
    模糊德爾菲法(FDM)
    區位配置
    Net-Zero Emissions in 2050
    ESG
    performance assessment
    data envelopment analysis (DEA)
    undesirable outputs
    fuzzy Delphi method (FDM)
    location-allocation
    日期: 2024
    上傳時間: 2024-02-01 13:04:43 (UTC+8)
    摘要: 政府部門為了推動產業發展,提供適當的產業園區作為產業生產基地,加速提升整體經濟效能及產值,因此產業園區營運效率對於國家整體經濟發展至關重要;此外隨著國際環境受到全球暖化及環境保育意識抬頭,並因應國際及臺灣2050淨零轉型政策,企業逐漸重視永續經營風險,這也是國際間推動ESG的主要目的。
    為瞭解我國產業園區營運對於永續發展的績效,本研究以ESG為觀點,建立一套評估臺灣地區產業園區營運績效的衡量模式,透過比較園區營運的績效表現,提供未來產業園區營運及管理策略。同時檢視國土計畫制度下,新增產業用地成長區位原則之適切性,進而探討空間、土地利用政策方向與現行產業園區發展趨勢目標是否趨於一致,並據以提出具體政策建議,期能更促進產業用地有效利用,有效提升臺灣經濟產業發展的效能。
    首先,本研究選定經濟部產業園區管理局(原經濟部工業局)編定61處工業區為範圍,利用模糊德爾菲專家問卷,篩選產業園區營運績效評估之指標項目,再透過資料包絡分析法(DEA)之非意欲產出模式,評鑑各產業園區的營運績效。在106至110年期中,各產業園區營運績效評估結果顯示,在環境面向以銅鑼、彰濱、芳苑、南崗、竹山及利澤等工業區效率值最高;在社會責任面向以龜山工業區為最高;在治理面向以新北及鳳山工業區為最高。進一步再運用視窗分析法,其結果顯示新北、鳳山、安平、南崗、臺中等工業區營運績效最佳,而美崙、雲林離島及和平等工業區則較差;各縣市推動產業園區之ESG績效表現,以南投縣最高,其次是新北市及彰化縣;在DEA各項投入產出項目之權重分析,環境面向以用水量及用電量最高、社會責任面向以工廠公告廢止家數最高、治理面向則以園區內設廠面積為最高;另將各產業園區分群,透過Mann-Whitney U檢定,結果顯示北部轄內產業園區績效顯著優於東部轄內產業園區,直轄市產業園區績效顯著較優於非直轄市產業園區,產業園區內產業越群聚者及交通越便捷者績效顯著較佳;另針對國土計畫新增產業用地之成長區位原則,僅園區位於新訂擴大都市計畫範圍、園區所在地產業發展率達80%以上及位於鐵、公路及港口一定距離內之績效較佳,其餘原則均無顯著差異。
    本研究為進一步對應當前政策提出具體建議,以縣市為單元,利用全域型及區域型空間自相關,分析近5年產業發展趨勢及走向,結果顯示臺南市係我國近五年產業發展的熱區,臺東縣係我國近5年產業發展的冷區,而雲林縣則有逐漸下滑的趨勢,反之,彰化縣及高雄市近5年產業發展有逐漸攀升的趨勢。本研究對照各縣市推動產業園區之ESG績效表現發現,其與現行產業發展趨勢趨於一致,顯示近5年中南部區域之縣市推動產業園區有逐步朝向提升ESG目標發展;另依據近5年產業聚集分析結果得知,臺南市、高雄市、彰化縣等3縣市係產業發展的熱區,惟該3縣市在各該國土計畫中,卻無提出相對應的需求量,造成實際發展情形與計畫訂定目標方向不一致的情形。
    最後本研究梳理臺灣產業園區規劃、營運及產業用地面臨重要課題包括:產業園區規劃、營運欠缺ESG永續目標理念;產業用地閒置/待轉型,土地價格不斷上漲;產業用地缺乏整體性規劃;產業用地供需失衡;園區資訊統計多元且零散等。本研究並提出包括強化產業園區規劃與營運之淨零策略、促進產業園區ESG永續發展指標落實執行、研議創新產業園區開發方式、提高既有園區土地或廠房利用效能、統計數據整合與平台系統單一窗口化、國土計畫對於新增產業用地之規劃應納入產業發展策略及淨零轉型引導思維,且應有整體性規劃策略、其指導原則並應依產業發展需求適度調整等政策建議,亦對現行相關政策提出具體建議。
    In order to promote industrial development, government departments provide suitable industrial parks as industrial production bases to accelerate the enhancement of overall economic efficiency and output value, therefore, the operational efficiency of industrial parks is crucial to the overall economic development of the country. In addition, as the international environment is subject to global warming and environmental conservation awareness, and in response to international and Taiwan's 2050 net-zero transformation policy, all enterprises are gradually focusing on the risk of sustainable operations, which is also the main purpose of promoting ESG in the international arena.
    In order to understand the performance of the operation of Taiwan's industrial parks on sustainable development, this study establishes a set of measurement models for evaluating the operation performance of industrial parks in Taiwan from the perspective of ESG, and provides a strategy for the operation and management of industrial parks in the future by comparing the performance of the operation of industrial parks. At the same time, the appropriateness of the growth location principle for new industrial land under the spatial plan system is examined to further explore whether the direction of the spatial and land use policy is consistent with the current trend of the development objectives of industrial parks, and specific policy recommendations are made based on this, with the hope of promoting the effective utilization of industrial land and enhancing the effectiveness of the development of Taiwan's economic and industrial sectors.
    First, 61 industrial parks managed by the Taiwanese Ministry of Economic Affairs (MOEA) were selected and underwent a fuzzy Delphi expert questionnaire to screen the ESG-oriented performance indicators; performance was evaluated through the data envelopment analysis (DEA) undesirable outputs model and the window analysis method. In the period of 2017 to 2021, the assessment results of the operation performance of each industrial park show that the industrial zones of Tou-lou, Chang-pin, Fong-yuen, Nan-gang, Chu-shan and Li-tsu have the highest efficiency values in terms of environmental protection; the Gui-shan Industrial Zone has the highest social responsibility; and the New Taipei and Feng-shan Industrial Zones have the highest governance. The results indicate that the New Taipei Industrial Park performed best in terms of ESG, followed by the Feng-shan, An-ping, Nan-gang, and Tai-chung Industrial Zones, while Mei-lun, Yun-lin Island, and Hu-pin Industrial Zones have worse performance. In the weighting analysis of DEA inputs and outputs, water and electricity consumption were the highest in the environmental protection direction, number of factories abolished was the highest in the social responsibility direction, and factory area in the park was the highest in the governance direction. Regarding factors affecting the performance of operation management, a Mann–Whitney U test showed that the northern industrial parks performed significantly better than those in the eastern region, those in the municipalities significantly outperformed the nonmunicipalities, and the industrial parks with more clustered industries and those in areas with convenient transportation performed substantially better. Regarding the principle of growth location of new industrial land under the National Spatial Plan, only the parks located in the newly expanded metropolitan area, with an industrial development rate of 80% or more, and within a certain distance from railroads, highways, and ports had better results, while the other principles did not have any significant differences.
    This study, in order to make specific recommendations to further respond to the current policies, we have used the Global and Local Spatial Autocorrelation methods to analyzes the trend and direction of industrial development in the past five years by using county and city as units. The results show that Tainan City is the hot area for industrial development, Taitung County is the cold area for industrial development in the past five years, but Yunlin County has a gradual decline. This study examines the ESG performance of industrial zones promoted by counties and cities and finds that it is consistent with the current trend of industrial development, which indicates that in the past five years, counties and cities in the south-central region have been promoting industrial parks towards the goal of improving ESG. Moreover, we compiled the spatial plan of municipality or county (city) directly under the jurisdiction of the State Council announced on April 30, 2021, and compared the results of the analysis of industrial clustering revealed that the direction of industrial land policies is contrary to the current trend of industrial development, and the spatial plans guide the development of industries toward the northern region, while the major national industrial development policies are mainly oriented toward the southern region. In addition, according to the results of the industrial clustering analysis in the past five years, Tainan City, Kaohsiung City, Changhua County and other three counties are hot areas for industrial development, but the three counties and cities have not proposed the corresponding demand in their respective land plans, resulting in inconsistencies between the actual development situation and the target direction set in the plan.
    Finally, this study summarizes the major issues facing Taiwan's industrial parks in terms of planning, operation and industrial land, including the planning and operation of industrial parks lack the concept of ESG sustainability objectives; industrial land is idle/to be transformed, and land prices are increasing; industrial land lacks overall planning; industrial land supply and demand are unbalanced; and information statistics of industrial parks are diversified and fragmented. This study also proposes policy recommendations for the follow-up of industrial park planning and operation management, including strengthening the net-zero strategy for industrial park planning and operation management, promoting the implementation of ESG sustainable development indicators for industrial parks, discussing innovative industrial park development methods, improving the efficiency of land or factory utilization in existing industrial parks, integrating statistical data and single windowing of the platform system, incorporating strategic guidance into the planning of new industrial land in the national land plan, having a holistic planning strategy, and appropriately adjusting the guiding principles according to the needs of industrial development, and making specific recommendations on the existing relevant policies.
    參考文獻: 中文參考文獻
    1.王冠斐、邊泰明(2010),企業在地再投資區位選擇之研究,Journal of Architecture, 11(3), 193-220。
    2.王健全(2022),ESG大軍壓境,臺灣準備好了嗎?,經濟前瞻第203期,中華經濟研究院。
    3.江佩玉(2001),「都市特性與產業生產效率關係之研究」,國立政治大學地政學系碩士論文。
    4.李哲宇(2010), 應用經濟─生態效率分析台灣縣市發展之研究,國立政治大學地政研究所碩士學位論文。
    5.吳晉宇(2020),產業用地開發之績效評估與其策略意涵:應用資料包絡分析法,國立台灣大學工學院土木工程學系碩士論文。
    6.吳毓佳(2000),台灣地區銀行業經營績效之評估─DEA方法之應用,私立銘傳大學管理科學研究所博士論文。
    7.李世亮(2022),論ESG與能源管理規範-聚焦電動機車電池再利用,東吳大學法學院法律學系碩士論文。
    8.林坤龍(2000),工業區生命週期及其效率評估之研究-以台灣地區工業區為例,國立成功大學都市計劃研究所碩士論文。
    9.林億明、孔維新、吳苡嘉(2014),如何以最經濟的方式攝取營養素:以蔬菜,水果為例。
    10.柯于璋(2008),土地使用減災工具之政策規劃可行性評估:模糊德爾菲層級法之應用,行政暨政策學報第四十七期,p57-90。
    11.高強、黃旭男、Sueyoshi, T(2003),管理績效評估資料包絡分析法,台北: 華泰文化。
    12.徐村和(1998),模糊德菲層級分析法,《模糊系統學刊》,第4卷第1期pp59-72。
    13.麻匡復(1999),編定工業區與都市計畫工業區開發效率之研究,國立政治大學地政碩士論文。
    14.許君毅(2003),台灣地區工業用地政策與生產效率之研究,國立政治大學地政博士論文。
    15.郭振雄、陳香梅、羅光達(2014),台灣工業部門二氧化碳之排放減量成本:環境方向性距離函數之應用。
    16.國家發展委員會(2021),六大核心戰略產業推動方案(核定本)。
    17.黃旭男(1993),資料包絡分析法使用程序之研究及其在非營利組織效率評估上之應用,國立交通大學管理科學研究所博士論文。
    18.黃台心、陳盈秀、陳珮欣(2007),台灣地區本國銀行業長期效率的動態分析,經濟論文,35(1),83-114。
    19.黃鏡如、傅祖壇、黃美瑛(2008),績效評估─效率與生產力之理論與應用,新陸書局股份有限公司。
    20.楊斌(2009), 2000-2006年中国区域生态效率研究─基于 DEA 方法的实证分析,经济地理,29(7),1197-1202。
    21.溫在弘(2015),空間分析:方法與應用,雙葉書廊有限公司。
    22.葉姿鈴(2022),鄰里公園兒童遊戲場設施選用評估指標之建立,朝陽科技大學碩士論文。
    23.經濟部工業局(2007),工業區開發管理年報。
    24.經濟部統計處(2020),109年「工廠校正及營運調查報告」。
    25.經濟部(2022),《前瞻基礎建設計畫─城鄉建設開發在地型產業園區計畫核定本》。
    26.經濟部工業局(2022),工業區開發管理年報。
    27.趙子良(2014),人行道環境評估量表之研究,朝陽科技大學建築系建築及都市設計碩博士班學位論文。
    28.廖婉彣(2015),臺灣產業園區生態效率之研究,國立政治大學地政學系碩士論文。
    29.齊立文(2022),實戰ESG,經理人月刊第212期7月號,巨思文化股份有限公司。
    30.劉巍、田金平、李星、劉婷、陳吕軍(2012),基于数据包络分析的综合类生态工业园区环境绩效研究,生态经济(7),125-128。
    31.駱豐裕(2004),DEA方法應用在評估台電公司服務所經營效率之研究,國立清華大學博士論文。
    32.蘇曉瑞、邊泰明(2004),國土計畫城鄉發展地區第2-3類如何面對未登記工廠? 以臺中市的劃設為例,土地問題研究季刊,21(3),115-129。

    外文參考文獻
    1.Aigner, D., Lovell, C. K., & Schmidt, P. (1977). Formulation and estimation of stochastic frontier production function models. Journal of econometrics, 6(1), 21-37.
    2.Berger, A. N., & Humphrey, D. B. (1991). The dominance of inefficiencies over scale and product mix economies in banking. journal of Monetary Economics, 28(1), 117-148.
    3.Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management science, 30(9), 1078-1092.
    4.Berger, A. N., Hunter, W. C., & Timme, S. G. (1993). The efficiency of financial institutions: A review and preview of research past, present and future. Journal of Banking & Finance, 17(2), 221-249.
    5.Ben, T. M. (2011). Interaction analysis among industrial parks, innovation input, and urban production efficiency. Asian Social Science, 7(5), 56.
    6.Bian, Y., Liang, N., & Xu, H. (2015). Efficiency evaluation of Chinese regional industrial systems with undesirable factors using a two-stage slacks-based measure approach. Journal of Cleaner Production, 87, 348-356.
    7.Bjurek, H., Hjalmarsson, L. and Forsund, F. R., “Deterministic Parametric and Nonparametric Estimation of Efficiency in Service Production,” Journal of Economics, Vol. 46, pp.213-227, 1990.
    8.Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European journal of operational research, 2(6), 429-444.
    9.Chang, C. C. (1999), The Nonparametric Risk-Adjusted Efficiency Measurement: An Application to Taiwan’s Major Rural Financial Intermediaries. American Journal of Agricultural Economics, 81, No. 4, pp.902-13.
    10.Delbecq, A.L., Van de Ven, A.H. and Gustafson, D.H. (1975). Group Techniques for Program Planning: A Guide to Nominal Group and Delphi Processes.
    11.Demircioğlu, Ş. N., & Özgüner, Z. (2022). Evaluation of Efficiency Measurement of Selected Technoparks with Data Envelopment Analysis (DEA). Ege Academic Review, 22(2), 155-168.
    12.Doyle, J. R., & Green, R. H. (1991). Comparing products using data envelopment analysis. Omega, 19(6), 631-638.
    13.Färe, R., S. Grosskopf, C. A. K. Lovell, and C. Pasurka. (1989). Multilateral productivity comparisons when some outputs areundesirable: A nonparametric npproach. The Review of Economics and Statistics, 71, No. 1, pp.90-8.
    14.Golany, B. and Roll, Y., “An Application Procedure for DEA,” OMEGA, Vol. 17, No. 3, pp.237-250, 1989.
    15.He, K., Zhu, N., Jiang, W., & Zhu, C. (2022). Efficiency evaluation of Chinese provincial industrial system Based on network DEA method. Sustainability, 14(9), 5264.
    16.Indahl, R., & Jacobsen, H. G. (2019). Private equity 4.0: Using ESG to create more value with less risk. Journal of Applied Corporate Finance, 31(2), 34-41.
    17.Ishikawa, A., Amagasa, M., Shiga, T., Tomizawa, G., Tatsuta, R., & Mieno, H. (1993). The max-min Delphi method and fuzzy Delphi method via fuzzy integration. Fuzzy sets and systems, 55(3), 241-253.
    18.Klopp, P. (1985). The analysis of the efficiency of production system with multiple input and output, Ph. D. Dissertation, University of Illnois, Chicago.
    19.Klir, G J. and Tina A. Folger. (1988). Fuzzy sets, uncertainty, and information, Prentice Hall Press, Englewood Cliffs, N.J.
    20.Lewin, A. Y. and Minton, J. W., “Determining Organizational Effectiveness: Another Look, and an Agenda for Research,” Management Science, Vol. 32, No. 5, pp.514-538, 1986.
    21.Mann, H. B., & Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other. The annals of mathematical statistics, 50-60.
    22.Meeusen, W., & van Den Broeck, J. (1977). Efficiency estimation from Cobb-Douglas production functions with composed error. International economic review, 435-444.
    23.Minutolo, M. C., Kristjanpoller, W. D., & Stakeley, J. (2019). Exploring environmental, social, and governance disclosure effects on the S&P 500 financial performance. Business Strategy and the Environment, 28(6), 1083-1095.
    24.Murray, Thomas J., Pipino, Leo L., van Gigch, John P. (1985). A pilot study of fuzzy set modification of Delphi. Human Systems Management, vol. 5, no. 1, pp.76-80.
    25.Seiford, L. M. and J. Zhu. (2002). Modeling undesirable factors in efficiency evaluation. European Journal of Operational Research, 142, No. 1, pp16-20.
    26.Tone, K., & Tsutsui, M. (2011). Applying an efficiency measure of desirable and undesirable outputs in DEA to US electric utilities. Journal of CENTRUM Cathedra: The Business and Economics Research Journal, 4(2), 236-249.
    27.UN. (2015). Transformimg our world: the 2030 Agenda for Sustainable Development: http://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E.
    28.Xie, J., Nozawa, W., Yagi, M., Fujii, H., & Managi, S. (2019). Do environmental, social, and governance activities improve corporate financial performance?. Business Strategy and the Environment, 28(2), 286-300.
    29.Zhang, B., Bi, J., Fan, Z., Yuan, Z., & Ge, J. (2008). Eco-efficiency analysis of industrial system in China: a data envelopment analysis approach. Ecological economics, 68(1), 306-316.
    30.Zhang, L., Zhao, L., & Zha, Y. (2021). Efficiency evaluation of Chinese regional industrial systems using a dynamic two-stage DEA approach. Socio-Economic Planning Sciences, 77, 101031.
    描述: 博士
    國立政治大學
    地政學系
    108257501
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0108257501
    資料類型: thesis
    顯示於類別:[地政學系] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    750101.pdf4571KbAdobe PDF0檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋