政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/149424
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 114014/145046 (79%)
造訪人次 : 52060027      線上人數 : 502
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 資訊管理學系 > 期刊論文 >  Item 140.119/149424
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/149424


    題名: Machine learning and artificial neural networks to construct P2P lending credit-scoring model: A case using Lending Club data
    作者: 蔡瑞煌
    Tsaih, Rua-Huan;Chang, An-Hsing;Yang, Li-Kai;Lin, Shih-Kuei
    貢獻者: 資管系
    關鍵詞: P2P lending;credit score;machine learning;artificial neural networks;feature engineering;Lending Club
    日期: 2022-06
    上傳時間: 2024-01-29 09:12:18 (UTC+8)
    摘要: In this study, we constructed the credit-scoring model of P2P loans by using several machine learning and artificial neural network (ANN) methods, including logistic regression (LR), a support vector machine, a decision tree, random forest, XGBoost, LightGBM and 2-layer neural networks. This study explores several hyperparameter settings for each method by performing a grid search and cross-validation to get the most suitable credit-scoring model in terms of training time and test performance. In this study, we get and clean the open P2P loan data from Lending Club with feature engineering concepts. In order to find significant default factors, we used an XGBoost method to pre-train all data and get the feature importance. The 16 selected features can provide economic implications for research about default prediction in P2P loans. Besides, the empirical result shows that gradient-boosting decision tree methods, including XGBoost and LightGBM, outperform ANN and LR methods, which are commonly used for traditional credit scoring. Among all of the methods, XGBoost performed the best.
    關聯: Quantitative Finance and Economics, Vol.6, No.2, pp.303-325
    資料類型: article
    DOI 連結: https://doi.org/10.3934/QFE.2022013
    DOI: 10.3934/QFE.2022013
    顯示於類別:[資訊管理學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML132檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋