English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113656/144643 (79%)
Visitors : 51717149      Online Users : 579
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/147735


    Title: 礦工行為與區塊鏈網絡性能的動態模擬分析
    Dynamic Simulation of Miner Behaviors and Blockchain System Performance
    Authors: 黃文志
    Huang, Wen-Zhi
    Contributors: 莊皓鈞
    Chuang, Hao-Chun
    黃文志
    Huang, Wen-Zhi
    Keywords: 比特幣
    區塊鏈
    礦工行為
    系統動力學
    Bitcoins
    Blockchain
    Miner behaviors
    System Dynamics
    Date: 2023
    Issue Date: 2023-10-03 10:45:01 (UTC+8)
    Abstract: 隨著區塊鏈技術應用範疇逐漸擴大,其技術原理與應用概念日益受到全球政 府與企業的重視。特別是比特幣,作為區塊鏈最早的應用之一,已經吸引了大量公 眾關注。本研究旨在以比特幣這一虛擬貨幣為研究對象,深入探討具有不同風險態 度的礦工對比特幣網絡的性能所產生的影響。為此,我們將採用系統動力學方法對 相關問題進行建模與分析。
    根據比特幣網絡的特性,我們可以知道比特幣價格短期與中長期波動會影響 礦工在網路停留的時間與礦工對報酬率的敏感度,而這兩者會改變比特幣網絡中 礦工的數量,最終對比特幣網絡的哈希值產生影響。依照上述脈絡,本研究首先建 構了一個基於比特幣網絡真實情境的系統動力學模型,並將比特幣礦工依照風險 態度的不同而區分成三大種類 (1.) 風險趨避礦工 (2.) 風險中立礦工 (3.) 風險偏 好礦工,探討這三種不同風險態度礦工會如何被比特幣價格波動所影響,進而對比 特幣網絡中的哈希值產生變動。
    通過模擬實驗,本研究發現三種不同風險態度礦工對比特幣網絡的運作有顯 著的影響。風險趨避礦工可能在比特幣價格大幅下跌時而選擇降低挖礦時間,因而 影響比特幣網絡中礦工數量,導致算力降低;而風險偏好礦工則較不受到比特幣價 格下跌的影響,反而在比特幣價格上漲時,還會增加待在網絡中挖礦的時間,進而 增加比特幣網絡中礦工數量,提升算力;而風險中立礦工在比特幣網絡中礦工數量 中則是相對穩定。此外,本研究還發現即便是抱有相同風險態度礦工,在面臨短期 和中長期價格波動的情況下,礦工數量及哈希值的影響程度也會有差異。
    綜合來看,本研究對於理解比特幣等區塊鏈網絡中礦工行為的影響機制以及 制定相應的政策措施具有重要意義,有助於幫助人們理解礦工行為在比特幣網絡 扮演的角色,甚至幫助推動區塊鏈技術的健康發展和應用。未來研究可進一步考慮 其他區塊鏈系統以及不同的礦工激勵機制,以擴大本研究的普適性和實用性。
    As the application of blockchain continue to expand, its technology and concepts are increasingly receiving attention from governments and enterprises worldwide. Particularly, Bitcoin, as one of the earliest and successful blockchain applications, has gained significant public interests. This paper will discuss the impact of miners’ different risk attitudes on the Bitcoin network performance, using system dynamics for modeling and analyzing.
    Based on the characteristics of the Bitcoin network, it is clear that short-term and medium-long term fluctuations in Bitcoin prices will affect miners’ residence time and their sensitivity to ROI. These two factors will change the number of miners in the Bitcoin network, ultimately affecting the hash rate of the Bitcoin network. With this concept, this study first constructs a system dynamics model based on the actual scenario of the Bitcoin network and classifies Bitcoin miners into three major categories according to their different risk attitudes: (1) risk-averse miners, (2) risk-neutral miners, and (3) risk-seeking miners. The study explores how these three types of miners with different risk attitudes are affected by fluctuations in Bitcoin prices, thereby causing changes in the hash rate in the Bitcoin network.
    Through simulation experiments, this study finds that the three types of miners with different risk attitudes have a significant impact on the Bitcoin network. Risk-averse miners may choose to reduce their mining time if Bitcoin price plummet, thus affecting the number of miners in the network and leading to a decrease in hash rate. On the other hand, risk-seeking miners are less affected by the decline in Bitcoin price; instead, if Bitcoin price rise, they will increase their time spent on mining significantly, resulting in a higher number of miners and an increased hash rate. Meanwhile, the number of risk- neutral miners in the bitcoin network remain relatively stable. On top of that, we also find that even for miners with the same risk attitudes, the extent of the impact on the number of miners and the hash rate varies when facing short-term and medium-long term price fluctuations.
    This study is of great magnitude for understanding the impact mechanisms of miner behaviors on Bitcoin network. It helps people understand the role of miner behaviors in the Bitcoin network and even promotes the healthy development and application of blockchain technology. Future research can further consider other blockchain systems and different miner incentive mechanisms to increase the universality and practicality of this study.
    Reference: Bissias, G., Levine, B.N., & Thibodeau, D. (2018). Using Economic Risk to Model Miner Hash Rate Allocation in Cryptocurrencies, Lecture Notes in Computer Science, 11025, 155–172.
    Fantazzini, D. & Kolodin, N. (2020). Does the Hashrate Affect the Bitcoin Price? Journal of Risk and Financial Management. 2020, 13(11), 263.
    Forrester, J.W. (1993). System Dynamics and the Lessons of 35 Years. In: De Greene, K.B. (eds) A Systems-Based Approach to Policymaking. Springer, Boston, MA.
    Gopalakrishnan, V. (2022). Modeling the Trajectory of Bitcoin using System Dynamics, (Master’s thesis). System Design and Management Program, Massachusetts Institute of Technology.
    Härdle, W.K., Harvey, C.R. and Reule, R.C.G. (2020). Understanding Cryptocurrencies, Journal of Financial Econometrics. 18(2), 181-208.
    Kroll, J.A., Davey, I.C., & Felten, E.W. (2013). The Economics of Bitcoin Mining, or Bitcoin in the Presence of Adversaries. The 12th Workshop on the Economics of Information Security, Washington DC, 11-12 June 2013.
    Kubal, J. & Kristoufek, L. (2022). Exploring the relationship between Bitcoin price and network’s hashrate within endogenous system, International Review of Financial Analysis. Elsevier, 84, 102375.
    Lasi, D. & Saul, L. (2020). A System Dynamics Model of Bitcoin: Mining as an Efficient Market and the Possibility of ‘Peak Hash’, Applied Economics and Finance, 7(4), 78-88.
    Li, K., Liu, Y., Wan, H. & Huang, Y. (2021). A discrete-event simulation model for the
    Bitcoin blockchain network with strategic miners and mining pool managers,
    Computers & Operations Research. 134, 105365.
    Mahmoodi, S., Jalaee, S.A. & Sadeghi, Z. (2022). Investigation of Environmental Effects of Bitcoin Mining Using System Dynamics Method, (Doctoral thesis). Shahid Bahonar University. Majakivi, A. (2019). Modeling the Bitcoin Ecosystem, (Master’s thesis). Aalto University. School of Electrical Engineering.
    Meadows, D.H., Meadows, D.L., Randers, J., Behrens, W.W. (1972). The limits of growth.:Potomac Associates.
    Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system.
    Description: 碩士
    國立政治大學
    企業管理研究所(MBA學位學程)
    110363074
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0110363074
    Data Type: thesis
    Appears in Collections:[企業管理研究所(MBA學位學程)] 學位論文

    Files in This Item:

    File Description SizeFormat
    307401.pdf1123KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback