政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/147296
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113822/144841 (79%)
Visitors : 51768359      Online Users : 591
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/147296


    Title: 非週期性鍵結海森堡模型之重整化群研究
    Renormalization group studies of Heisenberg chains with aperiodic couplings
    Authors: 王奕翔
    Wang, Yi-Xiang
    Contributors: 林瑜琤
    Lin, Yu-Cheng
    王奕翔
    Wang, Yi-Xiang
    Keywords: 張量網路重整化群
    密度矩陣重整化群
    非週期性
    量子自旋鏈
    Tensor network renormalization group method
    Density matrix renormalization group
    Aperiodicity
    Quantum spin chains
    Date: 2023
    Issue Date: 2023-09-01 16:28:07 (UTC+8)
    Abstract: 在海森堡(Heisenberg)反鐵磁鏈中,無序性將導致系統基態呈現出隨機單態,此為強無序重整化群法所推演出的關鍵結果。此方法的設計使之在無序系統低溫下能求得近似精確解。在本論文我們採用一強無序重整化群法的改良方法—樹狀張量網路強無序重整化群法,來探討帶有確定性但非週期耦合之自旋 1/2 鏈基態性質。非周期性效應對低溫性質的影響取決於平均耦合常數的局部波動,若非週期性屬攸關擾動,則該系統與完全無序系統會呈現出一定的相似性。若非週期性屬無關擾動,系統行為會表現如同均質情況,而屬邊際型的非週期性則可能導致非普適性的行為。藉由與密度矩陣重整化群法的結果作比較,我們檢驗了在各種類型的非週期性調變下樹狀張量網路重整化群法的效力,而這些非週期性調變在影響自旋鏈的基態性質中,可能屬攸關、邊際或無關型。
    Randomness in Heisenberg antiferromagnetic chains leads to the random-singlet ground state, which is a key analytical result of the strong-disorder renormalization group (SDRG) method. This method is designed to be asymptotically exact at low energies in the presence of disorder. Here we use a tree tensor network renormalization group (RG) method, an adaptation of SDRG, to study the ground state properties of S = 1/2 spin chains with deterministic aperiodic couplings. The effects of aperiodicity on low-temperature properties depend on the local fluctuations of the mean coupling constant. If the aperiodicity is a relevant perturbation, the system may bear some similarities with completely random systems. With irrelevant aperiodicity, the system behaves as in the uniform case. Marginal aperiodicity may lead to non-universal behavior. By comparing with density matrix RG results, we examine the validity of the tree tensor RG method for various types of aperiodic modulations that are relevant, marginal, or irrelevant in affecting the ground state properties of the spin chains.
    Reference: [1] Shechtman, D., Blech, I., Gratias, D. & Cahn, J. W. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951–1953 (1984).
    [2] Motrunich,O.,Mau,S.-C.,Huse,D.A.&Fisher,D.S.Infinite-randomness quantum ising critical fixed points. Phys. Rev. B 61, 1160–1172 (2000).
    [3] Igloi,F. Critical behaviour in aperiodic systems. Journal of PhysicsA:Mathematical and General 26, L703 (1993).
    [4] Hermisson, J., Grimm, U. & Baake, M. Aperiodic ising quantum chains. Journal of Physics A: Mathematical and General 30, 7315 (1997).
    [5] Hermisson, J. Aperiodic and correlated disorder in xy chains: exact results. Journal of Physics A: Mathematical and General 33, 57 (2000).
    [6] Harris, A. B. Effect of random defects on the critical behaviour of ising models. Journal of Physics C: Solid State Physics 7, 1671 (1974).
    [7] Luck, J. M. A classification of critical phenomena on quasi-crystals and other aperiodic structures. Europhysics Letters 24, 359 (1993).
    [8] Ma, S.-k., Dasgupta, C. & Hu, C.-k. Random antiferromagnetic chain. Phys. Rev. Lett. 43, 1434–1437 (1979).
    [9] Dasgupta, C. & Ma, S.-k. Low-temperature properties of the random heisenberg antiferromagnetic chain. Phys. Rev. B 22, 1305–1319 (1980).
    [10] Fisher, D. S. Random antiferromagnetic quantum spin chains. Physical review b 50, 3799 (1994).
    [11] Hyman, R. A. & Yang, K. Impurity driven phase transition in the antiferromagnetic spin-1 chain. Phys. Rev. Lett. 78, 1783–1786 (1997).
    [12] Monthus, C., Golinelli, O. & Jolicœur, T. Percolation transition in the random anti- ferromagnetic spin-1 chain. Phys. Rev. Lett. 79, 3254–3257 (1997).
    [13] Damle, K. & Huse, D. A. Permutation-symmetric multicritical points in random antiferromagnetic spin chains. Phys. Rev. Lett. 89, 277203 (2002).
    [14] Vieira, A. P. Low-energy properties of aperiodic quantum spin chains. Phys. Rev. Lett. 94, 077201 (2005).
    [15] CasaGrande,H.L.,Laflorencie,N.,Alet,F.&Vieira,A.P.Analytical and numerical studies of disordered spin-1 heisenberg chains with aperiodic couplings. Phys. Rev. B 89, 134408 (2014).
    [16] Goldsborough, A. M. & Römer, R. A. Self-assembling tensor networks and holography in disordered spin chains. Phys. Rev. B 89, 214203 (2014).
    [17] Lin, Y.-P., Kao, Y.-J., Chen, P. & Lin, Y.-C. Griffiths singularities in the random quantum ising antiferromagnet: A tree tensor network renormalization group study. Phys. Rev. B 96, 064427 (2017).
    [18] Tsai, Z.-L., Chen, P. & Lin, Y.-C. Tensor network renormalization group study of spin-1 random heisenberg chains. The European Physical Journal B 93, 1–10 (2020).
    [19] Bethe, H. Zur theorie der metalle: I. eigenwerte und eigenfunktionen der linearen atom kette. Zeitschrift für Physik 71, 205–226 (1931).
    [20] Des Cloizeaux, J. & Pearson, J. Spin-wave spectrum of the antiferromagnetic linear chain. Physical Review 128, 2131 (1962).
    [21] Luther, A. & Peschel, I. Calculation of critical exponents in two dimensions from quantum field theory in one dimension. Phys. Rev. B 12, 3908–3917 (1975).
    [22] Affleck, I., Gepner, D., Schulz, H. & Ziman, T. Critical behaviour of spin-s heisen- berg antiferromagnetic chains: analytic and numerical results. Journal of Physics A: Mathematical and General 22, 511 (1989).
    [23] Giamarchi, T. & Schulz, H. J. Correlation functions of one-dimensional quantum systems. Phys. Rev. B 39, 4620–4629 (1989).
    [24] Lieb,E.,Schultz,T.&Mattis,D. Two soluble models of an antiferromagnetic chain. Annals of Physics 16, 407–466 (1961).
    [25] McCoy,B.M.Spin correlation functions of the x−y model.Phys.Rev.173,531–541 (1968).
    [26] Sequence A003849 in the OEIS. https://oeis.org/A003849.
    [27] Sequence A010060 in the OEIS. https://oeis.org/A010060.
    [28] Turban, L., Iglói, F. & Berche, B. Surface magnetization and critical behavior of aperiodic ising quantum chains. Phys. Rev. B 49, 12695–12702 (1994).
    [29] White, S. R. Density matrix formulation for quantum renormalization groups. Phys- ical review letters 69, 2863 (1992).
    [30] Hikihara, T., Furusaki, A. & Sigrist, M. Numerical renormalization-group study of spin correlations in one-dimensional random spin chains. Physical Review B 60, 12116 (1999).
    [31] Goldsborough,A.M.Tensor networks and geometry for the modelling of disordered quantum many-body systems. Ph.D. thesis, University of Warwick (2015).
    [32] Orús, R. A practical introduction to tensor networks: Matrix product states and projected entangled pair states. Annals of physics 349, 117–158 (2014).
    [33] tensornetwork.org. https://tensornetwork.org.
    [34] Schollwöck,U.Thedensity-matrix renormalization group in the age of matrix product states. Annals of physics 326, 96–192 (2011).
    [35] Hubig, C., McCulloch, I. P. & Schollwöck, U. Generic construction of efficient
    matrix product operators. Phys. Rev. B 95, 035129 (2017).
    [36] Oseledets, I. V. Tensor-train decomposition. SIAM Journal on Scientific Computing
    33, 2295–2317 (2011).
    [37] Perez-Garcia, D., Verstraete, F., Wolf, M. & Cirac, J. Matrix product state represen-
    tations. QUANTUM INFORMATION & COMPUTATION 7, 401–430 (2007).
    [38] Schollwöck, U. The density-matrix renormalization group. Rev. Mod. Phys. 77,
    259–315 (2005).
    [39] Cytnx. https://github.com/Cytnx-dev/Cytnx.
    [40] Disordered MERA. https://github.com/AMGoldsborough/dMERA.
    [41] Goldsborough, A. M. & Evenbly, G. Entanglement renormalization for disordered systems. Physical Review B 96, 155136 (2017).
    [42] Tree tensor network strong disorder renormalisation group. https://github.com/ AMGoldsborough/tSDRG.
    Description: 碩士
    國立政治大學
    應用物理研究所
    110755002
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0110755002
    Data Type: thesis
    Appears in Collections:[Graduate Institute of Applied Physics] Theses

    Files in This Item:

    File SizeFormat
    500201.pdf1446KbAdobe PDF2179View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback