政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/146993
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 114014/145046 (79%)
造訪人次 : 52049310      線上人數 : 520
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/146993


    題名: 捷運開通對於沿線住宅租金之影響-以新北環狀線為例
    The Impact of Metro Opening on Residential Rental Prices Along the Line - A Case Study of New Taipei Circular Line
    作者: 廖倉淯
    Liao, Tsang-Yu
    貢獻者: 江穎慧
    Chiang, Ying-Hui
    廖倉淯
    Liao, Tsang-Yu
    關鍵詞: 租金
    捷運站
    特徵價格模型
    空間遲延模型
    差異中之差異法
    rent
    subway station
    hedonic price model
    spatial lag model
    difference-in-differences method
    日期: 2023
    上傳時間: 2023-09-01 15:15:30 (UTC+8)
    摘要: 隨著大眾捷運系統的發展,交通便利性收斂了空間與時間的距離,使得通勤的時間更為縮短,過去研究多認為其對於住宅的租金產生外溢的效果。捷運新北環狀線為新北市首條全線皆位於新北市境內之捷運線,更具研究捷運對於新北市租屋市場之影響有所代表性。且承租房屋族群多為學生、上班族為主,更係高度仰賴通勤便利性,因此本研究以環狀線通車後對於周邊住宅租金的影響進行研究,以探討影響捷運沿線之周圍租金重要因素為何,並且探討捷運通車後對於受捷運影響範圍租金影響程度。
    本研究利用特徵價格模型以及空間遲延模型分析房屋租賃平台出租資訊,分別就整層住家以及套房雅房兩物件進行影響因素探討,發現將房屋租金呈現空間相依現象,且以空間遲延模型之配適度優於特徵價格模型。且電梯大樓、床、洗衣機、可炊煮為影響整層住家類型之重要特徵;洗衣機、可炊煮為影響套房雅房之重要特徵;鄰里環境變數對於套房雅房之影響程度大於整層住家。
    以差異中之差異法(Difference-in-Differences)於考量空間相依情形下,分別就不同物件類型以捷運開通前後進行樣本分析,並以500公尺為影響範圍分別進行差異中之差異分析。發現捷運通車前對於整層住家租金呈現負向影響,通車後六個月對於套房雅房物件呈現負向影響。推測於捷運通車前,位於捷運站周邊之民眾可能仍選擇公車、自駕等更便捷之交通方式進行通勤,且捷運沿線多經過工業區,承租者可能以鄰近工作地點為考量,而非捷運,故對於環狀線捷運提升交通效益並無期待效應,使得周圍租金並無溢價現象;而通車後六個月推測係由於新冠疫情居家隔離、居家辦公等因素影響,致成交量下降,捷運站對於周圍房租溢價效果產生負向影響。
    With the development of the mass rapid transit system, the convenience of transportation has reduced the spatial and temporal distances, making commuting time shorter. Previous studies have often recognized its spillover effect on residential rents. The New Taipei Circular Line is the first fully within the jurisdiction of New Taipei City. It represents a significant impact on the rental housing market in New Taipei City. Renters in the area are mainly students and office workers who heavily rely on the convenience of commuting. Therefore, this study focuses on the impact of the opening of the Circular Line on surrounding residential rents, aiming to explore the key factors affecting the rental prices along the subway line.
    Using the hedonic price model and spatial lag model, this study analyzes rental information from housing rental platforms, specifically focusing on whole houses and suites/rooms as separate objects of analysis. The study finds that housing rents exhibit spatial dependence, and the spatial lag model fits better than the hedonic price model. Elevator buildings, beds, washing machines, and cooking facilities are identified as important features influencing the rental prices of whole houses. For suites/rooms, washing machines and cooking facilities are significant features, and the impact of neighborhood environmental variables is greater for suites/rooms compared to whole houses.
    Using the Difference-in-Differences (DID) method, accounting for spatial dependence, the study conducts a sample analysis for different types of properties before and after the MRT line`s opening (one month before and six months after). The analysis focuses on a radius of 500 meters from the MRT stations to measure the impact range. The results show a negative impact on entire residential unit rentals before the MRT`s opening and a negative impact on suite or room rentals six months after the opening. The negative impact before the MRT`s opening may be attributed to the fact that people living near MRT stations might still prefer more convenient transportation modes such as buses or private vehicles for commuting. Additionally, the MRT line passes through industrial areas, and tenants might prioritize proximity to their workplace rather than the MRT station. Hence, the circular metro line`s enhancement of transportation benefits did not result in rent premiums in the surrounding areas. As for the negative impact six months after the opening, it is speculated to be influenced by factors such as home quarantine and remote work during the COVID-19 pandemic, leading to a decrease in rental transactions and negatively affecting the rent
    參考文獻: 李家儂,2006,「交通運輸與土地使用整合規劃之演變~大眾運輸導向發展的都市發展模式」,『土地問題研究季刊』,5(3):70-83。
    李春長、梁志民、林豐文,2017,「捷運系統對鄰近住宅價格之影響-以差異中之差異法估計」,『台灣土地研究』,20(2):31-58。
    林左裕,2022,『不動產投資管理』七版,台北:元照出版有限公司。
    林祖嘉、林素菁,1993,「台灣地區環境品質與公共設施對房價與房租影響之分析」,『住宅學報』,(1):21-45。
    林楨家、黃至豪,2003,「台北捷運營運前後沿線房地屬性特徵價格之變化」,『運輸計劃季刊』,32(4):770-800。
    邵勸如、陳奉瑤,2022,「臺中捷運綠線對周邊住宅價格影響之研究」,『土地經濟年刊』,(33):1-22。
    洪得洋、林祖嘉,1999,「台北市捷運系統與道路寬度對房屋價格影響之研究」,『住宅學報』,(8):47-67。
    彭建文、楊宗憲、楊詩韻,2009,「捷運系統對不同區位房價影響分析-以營運階段為例」,『運輸計劃季刊』,38(3):275-296。
    徐國城、賴宗裕、詹士樑,2010,「台北都會區空間蔓延與緊密發展型態趨勢之研究」,『都市與計劃』,37(3):281-303。
    崔娜娜、古恒宇、沈体雁,2019,「北京市住房价格和租金的空间分异与相互关系」,『 GEOGRAPHICAL RESEARCH』,38(6)。
    馮正民、曾平毅、王冠斐,1994,「捷運系統對車站地區房價之影響」,『都市與計劃』,21(1):25-45。
    梁仁旭、陳奉瑤,2014,『不動產估價』三版,財團法人中國地政研究所。
    楊宗憲、蘇倖慧,「迎毗設施與鄰避設施對住宅價格影響之研究」,『住宅學報』,20(2), 61-80。
    謝博明,2015,「住宅次市場界定及住宅價格空間分析: 以新升格之台南市為例」,『住宅學報』,24(1):29-54。
    邊泰明,1993,「都會區空間結構之研究-以台北、台中、高雄都會區為例」,『都市與計劃』,20(3):223-239。
    Allen, M. T., Springer, T. M. and Waller, N. G., 1995, “Implicit pricing across residential rental submarkets”, The Journal of Real Estate Finance and Economics, 11(2): 137-151.
    Bates, L. K., 2006, “Does neighborhood really matter? Comparing historically defined neighborhood boundaries with housing submarkets”, Journal of Planning Education and Research, 26(1): 5-17.
    Benjamin, J., and Sirmans, G. S, 1996, “Mass transportation, apartment rent and property values“, Journal of Real Estate Research, 12(1), 1-8.
    Brunsdon, C., Fotheringham, A. S. and Charlton, M. E., 1996, “Geographically weighted regression: a method for exploring spatial nonstationarity”, Geographical analysis, 28(4): 281-298.
    Diao, M., Leonard, D., and Sing, T. F., 2017, “Spatial-difference-in-differences models for impact of new mass rapid transit line on private housing values”, Regional science and urban economics, 67, 64-77.
    D`Lima, W., Lopez, L. A. and Pradhan, A., 2022, “COVID‐19 and housing market effects: Evidence from US shutdown orders”, Real Estate Economics, 50(2): 303-339.
    Efthymiou, D. and Antoniou, C., 2013, “How do transport infrastructure and policies affect house prices and rents? Evidence from Athens, Greece”, Transportation Research Part A: Policy and Practice, 52: 1-22.
    Fotheringham, A. S., Crespo, R. and Yao, J., 2015, “Geographical and temporal weighted regression (GTWR)”, Geographical analysis, 47(4): 431-452.
    Glaeser, E. L, 2020, “Infrastructure and Urban Form”, National Bureau of Economic Research
    Grainger, C. A., 2012, “The distributional effects of pollution regulations: Do renters fully pay for cleaner air?”, Journal of Public Economics, 96(9-10): 840-852.
    Gupta, A., Van Nieuwerburgh, S., and Kontokosta, C., 2022, “Take the Q train: Value capture of public infrastructure projects“, Journal of Urban Economics, 129, 103422.
    Hermann, Z., Horváth, H., and Lindner, A., 2022, “Answering Causal Questions Using Observational Data-Achievements of the 2021 Nobel Laureates in Economics“, Financial and Economic Review, 21(1), 141-163.
    Higgins, C. and Kanaroglou, P., 2018, “Rapid transit, transit-oriented development, and the contextual sensitivity of land value uplift in Toronto” Urban Studies, 55(10): 2197-2225.
    Hu, L., He, S. and Su, S., 2022, “A novel approach to examining urban housing market segmentation: Comparing the dynamics between sales submarkets and rental submarkets. Computers”, Environment and Urban Systems, 94: 101775.
    Huang, B., Wu, B. and Barry, M., 2010, “Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices” International journal of geographical information science, 24(3): 383-401.
    Jones, C. and Watkins, C., 2009, Housing markets and planning policy, John Wiley & Sons.
    Kryvobokov, M., and Wilhelmsson, M., 2007, “Analysing location attributes with a hedonic model for apartment prices in Donetsk, Ukraine”, International journal of strategic property management, 11(3), 157-178.
    Leishman, C., 2007, “Hedonic methods and the housing market as a multi-level spatial system” EURA Conference, University of Glasgow,
    Lusht, K. M., 2001, Real estate valuation: principles and applications. KML publishing.
    Meen, G.and Whitehead, C., 2020, Understanding affordability: The economics of housing markets., Policy Press.
    O`Sullivan, A.and Gibb, K., 2002, Housing economics and public policy, John Wiley & Sons.
    Rosen, S., 1974, “Hedonic prices and implicit markets: product differentiation in pure competition”, Journal of political economy, 82(1): 34-55.
    Rosenthal, S. S., Strange, W. C.and Urrego, J. A., 2022, “JUE insight: Are city centers losing their appeal? Commercial real estate, urban spatial structure, and COVID-19”, Journal of Urban Economics, 127: 103381.
    Ryan, S., 2005, “The value of access to highways and light rail transit: Evidence for industrial and office firms”, Urban Studies, 42(4), 751-764.
    Sadayuki, T., 2018, “Measuring the spatial effect of multiple sites: An application to housing rent and public transportation in Tokyo, Japan“, Regional science and urban economics, 70, 155-173.
    Soltani, A., Pettit, C. J., Heydari, M.and Aghaei, F., 2021, “Housing price variations using spatio-temporal data mining techniques”, Journal of housing and the built environment, 36(3): 1199-1227.
    Su, S., He, S., Sun, C., Zhang, H., Hu, L.and Kang, M., 2021, “Do landscape amenities impact private housing rental prices? A hierarchical hedonic modeling approach based on semantic and sentimental analysis of online housing advertisements across five Chinese megacities”, Urban Forestry & Urban Greening, 58: 126968.
    Su, S., Zhang, J., He, S., Zhang, H., Hu, L.and Kang, M., 2021, “Unraveling the impact of TOD on housing rental prices and implications on spatial planning: A comparative analysis of five Chinese megacities”, Habitat International, 107: 102309.
    Tomal, M.and Helbich, M., 2022, “The private rental housing market before and during the COVID-19 pandemic: A submarket analysis in Cracow, Poland”, Environment and Planning B: Urban Analytics and City Science, 23998083211062907.
    Wooldridge, J. M., 2020, Introductory Econometrics A Modern Approach, Seventh Edition, Cengage.
    Xiao, Y., Webster, C. and Orford, S., 2016, “Can street segments indexed for accessibility form the basis for housing submarket delineation?”, Housing Studies, 31(7): 829-851.
    Zhang, S., Wang, L., and Lu, F., 2019, “Exploring housing rent by mixed geographically weighted regression: A Case study in Nanjing”, ISPRS International Journal of Geo-Information, 8(10): 431.
    描述: 碩士
    國立政治大學
    地政學系
    110257017
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0110257017
    資料類型: thesis
    顯示於類別:[地政學系] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    701701.pdf2506KbAdobe PDF20檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋