政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/146878
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113822/144841 (79%)
Visitors : 51874228      Online Users : 517
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/146878


    Title: 行為變遷:以用途理論解讀惠普科技產品創新
    Behavioral Shift: Analyzing Hewlett-Packard’s Product Innovation Using Deployment Theory
    Authors: 蔡宇晴
    Tsai, Yu-Ching
    Contributors: 蕭瑞麟
    Hsiao, Ruey-Lin
    蔡宇晴
    Tsai, Yu-Ching
    Keywords: 行為變遷
    環境趨勢
    產品創新
    創新調適
    研發
    behavioral shift
    environmental trend
    product innovation
    innovation adaptation
    research and development
    Date: 2023
    Issue Date: 2023-09-01 14:51:12 (UTC+8)
    Abstract: 受新冠肺炎疫情與技術進展等環境面的遷移,使用者行為會產生改變,比方說高度電腦使用、居家視訊會議以及各式線上活動逐漸增加。隨著數位化的趨勢,技術彷彿獲得至高無上的地位,以至於各家企業紛紛以技術為中心,展開產品技術創新,卻不知顧客對於產品設計的影響力。行為中藏有需求,然而現行理論的分析僅著重於短期的時間段,缺少對未來行為的探究,也因此難以預測長期的需求。本研究由行為變遷入手,分析環境變化下顧客行為的增減。本研究以惠普科技的三項筆記型電腦部件創新為例,分別闡釋視訊鏡頭、鍵盤以及筆電機殼研發背後的行為變遷、需求變化和創新回應。理論貢獻上,本研究提出行為分析的三項特性:前瞻性、調適性以及趨勢性。這可協助企業觀察用戶行為的變動,預測未來對產品的需求。以實務啟發而言,本研究釐清行為趨勢之於產品創新的重要性。分析行為的消長能辨識需求,為產品研發超前布局。分析行為的變遷能讓研發維持彈性,持續跟上趨勢而與時俱進,才不至於毫無因應之力。快速變動已成市場定局,若要保持競爭力,企業需掌握環境動態,瞭解用戶需求變遷,方能以創新立於不敗之地。
    Affected by environmental changes, such as the COVID-19 epidemic and technological advancement, users would shift to new behaviors, such as increased computer use, home video conferencing, and various online activities. With the trend of digitalization, technology seems to have gained supremacy, so that companies have focused on product innovation. However, they rarely pay attention to the influence of consumer behavior on product design. Consumers’ needs are hidden in behavior, but the analysis of current theories majorly focuses on given time periods and explores less of future behavior. This is why it is rather difficult to predict long-term needs for product innovation. This study examines behavioral change and analyzes the increase and decrease of user behavior under environmental changes. This research selected HP`s three component innovations within notebook computer projects to explain the behavioral shifts, demand changes and innovation responses behind the development of video cameras, keyboards, and notebook casings. Theoretically, this study proposes three features of behavioral analysis with regards to prospective, adaptive and trending. The findings could help companies observe variations in usage behaviors and predict future demand for product innovation. In terms of practical implication, this study highlights the importance of behavioral trends analysis in product innovation. The inspection of addition and deduction of usage behavior could identify demand in advance, while preparing for product development. The analysis of behavioral shift allows R&D to maintain flexibility, keep up with market trends, and keep pace with the preference variations timely, so as to avoid ineffective coping. Rapid market changes have become new normal. To maintain competitiveness, enterprises need to become sensitive to environmental jolts and understand the changing needs of users in order to remain invincible through innovation.
    Reference: 參考文獻
    Adner, R. 2017. Ecosystem as structure: An actionable construct for strategy. Journal of Management, 43(1): 39-58.
    Ajzen, I. 1991. The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2): 179-211.
    Ariely, D. 2008. Predictably irrational: The hidden forces that shape our decisions. New York: HarperCollins.
    Baldwin, C., & von Hippel, E. 2011. Modeling a paradigm shift: From producer innovation to user and open collaborative innovation. Organization Science, 22(6): 1399-1417.
    Beaudry, A., & Pinsonneault, A. 2005. Understanding user responses to information technology: A coping model of user adaption. MIS Quarterly, 29: 493-524.
    Beckman, S. L., & Barry, M. 2007. Innovation as a learning process: Embedding design thinking. California Management Review, 50(1): 25-56.
    Borner, K., Berends, H., Deken, F., & Feldberg, F. 2023. Another pathway to complementarity: How users and intermediaries identify and create new combinations in innovation ecosystems. Research Policy, 52(7): 104788.
    Brannen, M. Y. 2004. When Mickey loses face: Recontextualization, semantic fit, and the semiotics of foreignness. Academy of Management Review, 29(4): 593-616.
    Cantarella, M., Fraccaroli, N., & Volpe, R. 2023. Does fake news affect voting behaviour? Research Policy, 52(1): 104628.
    Christensen, C., Hall, T., Dillon, K., & Duncan, D. S. 2016. Competing against luck: The story of innovation and customer choice. HarperBusiness an imprint of HarperCollins Publishers.
    Claussen, J., Kretschmer, T., & Mayrhofer, P. 2012. The effects of rewarding user engagement: The case of Facebook apps. Information Systems Research, 24.
    de Jong, J. P. J., Rigtering, C., & Spaans, L. 2023. Heroes of diffusion: Making user innovations widely available. Research Policy, 52(8): 104840.
    George, J. M., & Bettenhausen, K. L. 1990. Understanding prosocial behavior, sales performance, and turnover: A group-level analysis in a service context. Journal of Applied Psychology, 75: 698-709.
    Grant, A. M., Dutton, J. E., & Rosso, B. D. 2008. Giving commitment: Employee support programs and the prosocial sensemaking process. Academy of Management Journal, 51(5): 898-918.
    Hartmann, M. R., & Hartmann, R. K. 2023. Hiding practices in employee-user innovation. Research Policy, 52(4): 104728.
    Hienerth, C., & Lettl, C. 2011. Exploring how peer communities enable lead user innovations to become standard equipment in the industry: Community pull effects. Journal of Product Innovation Management(1): 175-195.
    Hsiao, R.-L., Wu, S. W., & Hou, S. T. 2008. Sensitive cabbies: Ongoing sense-making within technology structuring. Information and Organization, 18(4): 251–279.
    Jaakkola, E., & Alexander, M. 2014. The role of customer engagement behavior in value co-creation: A service system perspective. Journal of Service Research, 17(3): 247-261.
    Jacobides, M. G., & Reeves, M. 2020. Adapt your business to the new reality. Harvard Business Review, 98(5): 74-81.
    Jasperson, J., Carter, P. E., & Zmud, R. W. 2005. A comprehensive conceptualization of post-adoptive behaviors associated with information technology enabled work systems. MIS Quarterly, 29(3): 525-557.
    Jena, S. D., Lodi, A., & Sole, C. 2021. On the estimation of discrete choice models to capture irrational customer behaviors. INFORMS J. Comput., 34: 1606-1625.
    Karahanna, E., Straub, D. W., & Chervany, N. L. 1999. Information technology adoption across time: A cross-sectional comparison of pre-adoption and post-adoption beliefs. MIS Quarterly, 23(2): 183-213.
    Koçak, Ö., Hannan, M. T., & Hsu, G. 2013. Emergence of market orders: Audience interaction and vanguard influence. Organization Studies, 35(5): 765-790.
    Kraatz, M. S., & Zajac, E. J. 2001. How organizational resources affect strategic change and performance in turbulent environments: Theory and evidence. Organization Science, 12(5): 632-657.
    Lee, K., & Malerba, F. 2017. Catch-up cycles and changes in industrial leadership:Windows of opportunity and responses of firms and countries in the evolution of sectoral systems. Research Policy, 46(2): 338-351.
    Lilien, G. L., Morrison, P. D., Searls, K., Sonnack, M., & von Hippel, E. 2002. Performance assessment of the lead user idea-generation process for new product development. Management Science, 48(8): 1042-1059.
    Mahr, D., & Lievens, A. 2012. Virtual lead user communities: Drivers of knowledge creation for innovation. Research Policy, 41(1): 167-177.
    Mathieson, K. 1991. Predicting user intentions: Comparing the technology acceptance model with the theory of planned behavior. Information Systems Research, 2(3): 173-191.
    Moore, J. 1993. Predators and prey: A new ecology of competition. Harvard Business Review, 71(3): 75-86.
    Newman, M., & Noble, F. 1990. User involvement as an interaction process: A case study. Information Systems Research, 1(1): 89-113.
    Orlikowski, W. J. 1996. Improvising organizational transformation over time: A situated change perspective. Inf. Syst. Res., 7: 63-92.
    Powell, E. E., Hamann, R., Bitzer, V., & Baker, T. 2018. Bringing the elephant into the room? Enacting conflict in collective prosocial organizing. Journal of Business Venturing, 33(5): 623-642.
    Salunke, S., Weerawardena, J., & McColl-Kennedy, J. R. 2013. Competing through service innovation: The role of bricolage and entrepreneurship in project-oriented firms. Journal of Business Research, 66(8): 1085-1097.
    Siggelkow, N. 2002. Evolution toward fit. Administrative Science Quarterly, 47(1): 125-159.
    Sokol, M. B. 1994. Adaptation to difficult designs: Facilitating use of new technology. Journal of Business and Psychology, 8(3): 277-296.
    Thomke, S., & Hippel, E. 2002. Customers as innovators: A new way to create value. Harvard Business Review, 80.
    Tyre, M., & Orlikowski, W. 1994. Windows of opportunity: Temporal patterns of technological adaptation in organizations. Organization Science, 5(1): 98-118.
    von Hippel, C. D., & Cann, A. B. 2021. Behavioral innovation: Pilot study and new big data analysis approach in household sector user innovation. Research Policy, 50(8): 103992.
    von Hippel, E. 1986. Lead users: A source of novel product concepts. Management Science, 32(7): 791-805.
    von Hippel, E. 2001. Innovation by user communities: Learning from open-source software. Sloan Management Review, 42(4): 82-86.
    Wan, W. P., & Yiu, D. W. 2009. From crisis to opportunity: environmental jolt, corporate acquisitions, and firm performance. Strategic Management Journal, 30(7): 791-801.
    Witell, L., Gebauer, H., Jaakkola, E., Hammedi, W., Patricio, L., & Perks, H. 2017. A bricolage perspective on service innovation. Journal of Business Research, 79: 290-298.
    Yang, M., Ren, Y., & Adomavicius, G. 2019. Understanding user-generated content and customer engagement on Facebook Business Pages. Information Systems Research, 30(3): 839-855.
    Yu, J., & Zaheer, S. 2010. Building a process model of local adaptation of practices: A study of Six Sigma implementation in Korean and US firms. Journal of International Business Studies, 41(3): 475-499.
    Description: 碩士
    國立政治大學
    科技管理與智慧財產研究所
    110364121
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0110364121
    Data Type: thesis
    Appears in Collections:[Graduate Institute of TIPM] Theses

    Files in This Item:

    File Description SizeFormat
    412101.pdf2267KbAdobe PDF297View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback