English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52398401      Online Users : 348
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/146663


    Title: 校系選擇的社會視野: 以大學個人申請分發之集群效應為例
    Authors: 陳嘉葳
    Chen, Chia-Wei
    Contributors: 陳信木
    Chen, Hsin-Mu
    陳嘉葳
    Chen, Chia-Wei
    Keywords: 教育流動
    職涯選擇
    校系競爭
    大數據分析
    資料探勘
    Social Mobility of Education
    Career Choice
    Competition between Schools and Departments
    Big Data Analysis
    Data Mining
    Date: 2023
    Issue Date: 2023-08-02 14:25:21 (UTC+8)
    Abstract: 高中升大學為台灣社會中教育流動的重要階段,近年來,台灣教育部逐漸以個人申請的入學管道為大學升學管道發展的主體,個人申請中考生會透過成績與校系選擇進行分流,根據成績進行志願選填,而在志願選填的階段,考生必須考量許多社會性因素,除了家庭期望、經濟等因素外,校系生態因素(如學校的名聲、學校或科系間的競爭關係)占了重要的成分,「不同性質的考生會如何進行校系選擇與排序」成為了探索台灣教育流動、校系生態中值得研究的問題。

    本研究以高中升大學的考生為分析群體,透過網路爬蟲於公開查榜網站取得考生志願選填的母體資料,並且使用資料探勘(Data Mining)方法探索考生志願選擇中的關聯配對法則(Association rule),目標從購物車理論(Shopping Cart Theory)的分析角度解釋考生的志願選擇,如選擇A系的考生有高機率會選擇B系,如此一來,我們能知道在考生的選擇中,哪些科系容易一同被考生選擇,彼此的關聯性高,形成集群(Cluster),並透過社會網絡視覺化呈現校系間的關聯與集群結構,透過本研究的分析模式能探索出哪些學校、科系間是互相搶學生的競爭關係,如選擇社會系的考生高機率也會選擇法律系與政治系,最後會在三系間做出抉擇,代表這三個科系間會面臨互相搶學生的狀態。

    本文挖掘出科系選擇整體架構的圖像(Pattern),期待研究分析的成果能對教育工作者、政府教育相關單位、各校系招生單位在制定教育、招生策略上能更有效的制定策略以及鎖定潛在的學生群體作為招生對象,也寄望後續研究能繼續從不同角度切入探索考生選擇志願的因素,探索出更為豐碩的研究成果。
    University Admission is an important stage in social mobility of education of Taiwan society. In recent years, Taiwan`s Ministry of Education has gradually taken the admission channel of individual application as the main body of the development of university admission channel. Candidates in individual application will be divided by grades and school department selection. In the stage of voluntary selection, candidates must consider many social factors. In addition to family expectations, economic factors, etc., school department ecological factors (such as school reputation, competition between schools or departments) play a significant role.

    In this study, the candidates for university admission were taken as our research subject, and the parental data of the candidates` choices for schools and departments were obtained through the web crawler on the public search website, and the Data Mining method was used to explore the association matching rules in the data. Our goal is to explain candidates’ choices for schools and departments from the analysis angle of Shopping Cart Theory. In this way, we can know which schools and departments are strongly related to each other, forming a cluster. The association and cluster structure between schools and departments can be visualized through the social network method. Through the analysis mode of this study, we can explore the competitive relationship between schools and departments. For example, candidates who choose the Department of Sociology have a high probability of choosing the Department of Law and the Department of Politics. In the end, they will make a choice among the three departments, which means that these three departments will face a state of competing for students.

    This paper excavates the pattern of the overall structure of departmental selection. It is expected that the results of the research and analysis can help educators, government education-related units, and school admissions units to formulate education and enrollment strategies more effectively. Targeting potential student groups as enrollment targets, it is also hoped that follow-up research will continue to explore the factors of candidates` choice for schools and departments from different angles, and explore more abundant research results.
    Reference: Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. Proc. 20th int. conf. very large data bases, VLDB,
    Blau, P. M., & Duncan, O. D. (1967). The American occupational structure.
    Bourdieu, P. (2018a). Distinction a social critique of the judgement of taste. In Inequality Classic Readings in Race, Class, and Gender (pp. 287-318). Routledge.
    Bourdieu, P. (2018b). The forms of capital. In The sociology of economic life (pp. 78-92). Routledge.
    Bowles, S., & Gintis, H. (2011). Schooling in capitalist America: Educational reform and the contradictions of economic life. Haymarket Books.
    Calarco, J. M. (2018). Negotiating opportunities: How the middle class secures advantages in school. Oxford University Press.
    Chen, S.-Y., Chang, Y.-J., & Ko, H.-W. (2011). The Influence of Parental Education Level, ParentalReadingAttitude, and Current Home ReadingActivities on Students` ReadingAttainment: Findings fromthe PIRLS 2006. 教育心理學報, 43(S), 357-376.
    Durkheim, E. (1956). Education and sociology. Simon and Schuster.
    Durkheim, E., & Durkheim, E. (1982). What is a social fact? The Rules of Sociological Method: And selected texts on sociology and its method, 50-59.
    Han, J., Pei, J., & Tong, H. (2022). Data mining: concepts and techniques. Morgan kaufmann.
    Kalmijn, M. (1998). Intermarriage and homogamy: Causes, patterns, trends. Annual review of sociology, 395-421.
    Kohavi, R. (2001). Mining e-commerce data: the good, the bad, and the ugly. Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining,
    Mannheim, B. (1988). Social background, schooling, and parental job attitudes as related to adolescents` work values. Youth & Society, 19(3), 269-293.
    Marx, K. (1875). Le capital. Maurice Lachatre.
    Page, L., Brin, S., Motwani, R., & Winograd, T. (1999). The PageRank citation ranking: Bringing order to the web.
    Parsons, T. (1971). The system of modern societies. Prentice-Hall Englewood Cliffs, NJ.
    Perozzi, B., Al-Rfou, R., & Skiena, S. (2014). Deepwalk: Online learning of social representations. Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining,
    Sewell, W. H., Haller, A. O., & Portes, A. (1969). The educational and early occupational attainment process. American sociological review, 82-92.
    Sewell, W. H., & Hauser, R. M. (1975). Education, Occupation, and Earnings. Achievement in the Early Career.
    田芳華, & 傅祖壇. (2009). 大學多元入學制度: 學生家庭社經背與學業成就之比較. 教育科學研究期刊, 54(1), 209-233.
    林宗弘. (2009). 台灣的後工業化: 階級結構的轉型與社會不平等, 1992-2007. 台灣社會學刊, 43, 93-158.
    林俊瑩, & 吳裕益. (2007). 家庭因素, 學校因素對學生學業成就的影響: 階層線性模式的分析. 教育研究集刊, 53(4), 107-144.
    洪淑君. (2020). 探究因應少子化之科技大學招生策略-從校務研究觀點. 大仁學報(54), 1-20.
    洪惠嘉, & 危芷芬. (2017). 臺灣地區學生自我效能, 家長支持與學業成就之內容分析與後設分析研究. 市北教育學刊(58), 73-107.
    孫清山, & 黃毅志. (1996). 補習教育, 文化資本與教育取得.
    郭祐誠. (2018). 同儕性別組成對大學科系選擇之影響. 經濟論文, 46(2), 225-261.
    陳柏宇. (2021). 家庭背景對大學科系選擇的跨代移轉.
    銀慶貞, 陶宏麟, & 洪嘉瑜. (2015). 由大學多元入學者的個人背景與滿意度評估多元入學的成效. 應用經濟論叢(98), 1-53.
    駱明慶. (2002). 誰是台大學生?-性別, 省籍與城鄉差異. 經濟論文叢刊, 30(1), 113-147.
    駱明慶. (2004). 升學機會與家庭背景. 經濟論文叢刊, 32(4), 417-445.
    駱明慶. (2018). 誰是台大學生?(2001-2014)-多元入學的影響. 經濟論文叢刊, 46(1), 47-95.
    謝志龍, & 莊致嘉. (2016). 文化資本的代間傳遞與轉換對國中學生教育成就的影響. 教育科學研究期刊, 61(3), 163-195.
    蘇國賢. (2004). 家庭內的社會比較: 兄弟姊妹的人口組成結構對教育及地位取得的影響.
    Description: 碩士
    國立政治大學
    社會學系
    110254005
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0110254005
    Data Type: thesis
    Appears in Collections:[社會學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    400501.pdf6778KbAdobe PDF2143View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback