政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/146478
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113961/144987 (79%)
造訪人次 : 51994141      線上人數 : 187
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/146478


    題名: 台灣半導體供應鏈:網絡分析
    Taiwan Semiconductor Supply Chain: A Network Analysis
    作者: 陳維勛
    Chen, Wei-Xun
    貢獻者: 何靜嫺
    Ho, Shirley J
    陳維勛
    Chen, Wei-Xun
    關鍵詞: 網絡分析
    冪次分配
    中心性
    集團
    專利數量
    Networks
    Power Law
    Degrees of Centrality
    Cliques
    Patent Numbers
    日期: 2023
    上傳時間: 2023-08-02 13:42:56 (UTC+8)
    摘要: 台灣半導體產業在世界上佔重要的地位。在台灣半導體供應鏈上游、中游和下游廠商包含生產超過27種產品。原本傳統的計算方式像是market share或是HHI無法完全的描述整個半導體供應鏈。所以我們用廠商營收的相關性建立三種不同的網路(threshold, MST and PMFG networks),在檢查這三個網路是否具有實證網路的特徵。我們的研究表明PMFG networks可以最好的描述網路因為網路degree服從power law distribution。
    使用建構出的PMFG網路計算描述網路和廠商的統計量,包含中心性、加權中心性和cliques。並且利用clique分析進一步將節點依照“production-related” 或 ‘product-related”進行分類,接著利用中心性和專利數量的關係,看是否創新行為是否具有傳染效果。
    我們的研究發現(1) "production-related" cliques,當cliques至少包含上、中、下游其中一家廠商他的營運成本會比較低。 (2)比較 “cliques producing multiple products” 和 “cliques producing few products” 發現生產比較多產品的cliques他的EPS會比生產比較少產品的cliques來得高。(3)將cliques與金融上的表現連結發現當“three-categories cliques” 裡的廠商股價的平均相關係數最高。 (4)我們研究中心性和廠商專利數量之間的關係,betweenness centrality (BC), closeness centrality (CC), and eigenvector centrality (EC)對於專利數量有正且顯著的影響。 (5) 計算加權的中心性研究加權中心性與專利數量的關係。發現每個節點都使用他的總資產進行加權weighted closeness centrality對於專利數量的影響最大。換句話來說如果每個節點都使用廠商大小來加權我們可以進一步找出影響創新的網路特徵。
    Taiwan’s semiconductor industry plays a crucial role in the globe. Our firms cover all upstream, midstream and downstream of the manufacturing process, and provide more than 27 products. Traditional metrics, such as market share or HHI, cannot fully describe the structure of semiconductor industry. As there is lack of actual transactions database, we employ methods that use firms’ revenue correlations to construct three networks (threshold, MST and PMFG networks), then we examine whether the three networks conform to the empirical characteristics of networks. Our analyses suggest that the PMFG network can best describe our data and follow the power law distribution.
    We then calculate several metrics to measure the network properties and firm-specific characteristics in the constructed PMFG network, including particularly the degrees of centrality and the node-weighted degrees of centrality, and “cliques”. To further investigate the properties of cliques, we classify cliques according to whether the nodes are “production-related” or they are ‘product-related”. Finally, we investigate the relationship between firms’ degrees of centrality and the number of patents they hold, to see if there are contagious effects on firms` innovation activities.
    Our results show that (1) for "production-related" cliques, if a clique contains at least one firm each from the upstream, downstream, and midstream, then the operating costs tend to be lower. (2) We compare “cliques producing multiple products” to “cliques producing few products”, and found that cliques producing multiple product categories tend to have higher average EPS than those producing fewer categories. (3) We examined the financial connection within cliques, and found that the “three-categories cliques” have the highest average correlation coefficient in member firms’ stock prices. (4) We explored the relationship between the centrality measures of firms and the number of patents, and found that betweenness centrality (BC), closeness centrality (CC), and eigenvector centrality (EC) had a positive and significant effect on patent counts. (5) We calculated the asset-weighted centrality to examine its impact on the number of patents. We found that after each node is weighted by the proportion of total asset, the weighted closeness centrality becomes most relevant for innovations. In other words, after weighing each node by its relative firm size, we can further identify the most relative network feature for innovations.
    參考文獻: Alstott, J., Bullmore, E., & Plenz, D. (2014). powerlaw: a Python package for analysis of heavy-tailed distributions. PloS one, 9(1), e85777.
    Arora, A., Ceccagnoli, M., & Cohen, W. M. (2008). R&D and the patent premium. International journal of industrial organization, 26(5), 1153-1179.
    Audretsch, D. B., & Acs, Z. J. (1991). Innovation and size at the firm level. Southern Economic Journal, 739-744.
    Birch, J., Pantelous, A. A., & Soramäki, K. (2016). Analysis of correlation based networks representing DAX 30 stock price returns. Computational Economics, 47(4), 501-525.
    Chen, X., Shangguan, W., Liu, Y., & Wang, S. (2021). Can network structure predict cross-sectional stock returns? Evidence from co-attention networks in China. Finance Research Letters, 38, 101422.
    Chi, K. T., Liu, J., & Lau, F. C. (2010). A network perspective of the stock market. Journal of Empirical Finance, 17(4), 659-667.
    Eryiğit, M., & Eryiğit, R. (2009). Network structure of cross-correlations among the world market indices. Physica A: Statistical Mechanics and its Applications, 388(17), 3551-3562.
    Falasca, M., Zobel, C. W., & Cook, D. (2008, May). A decision support framework to assess supply chain resilience.
    Hearnshaw, E. J., & Wilson, M. M. (2013). A complex network approach to supply chain network theory. International Journal of Operations & Production Management.
    Hong, M. Y., & Yoon, J. W. (2022). The impact of COVID-19 on cryptocurrency markets: A network analysis based on mutual information. Plos one, 17(2), e0259869.
    Huang, W. Q., Zhuang, X. T., & Yao, S. (2009). A network analysis of the Chinese stock market. Physica A: Statistical Mechanics and its Applications, 388(14), 2956-2964.
    Kenett, D. Y., Tumminello, M., Madi, A., Gur-Gershgoren, G., Mantegna, R. N., & Ben-Jacob, E. (2010). Dominating clasp of the financial sector revealed by partial correlation analysis of the stock market. PloS one, 5(12), e15032.
    Kim, J., Lee, S. J., & Marschke, G. (2009). Relation of firm size to R&D productivity.
    Li, Y., Jiang, X. F., Tian, Y., Li, S. P., & Zheng, B. (2019). Portfolio optimization based on network topology. Physica A: Statistical Mechanics and its Applications, 515, 671-681
    Nerkar, A., & Roberts, P. W. (2004). Technological and product‐market experience and the success of new product introductions in the pharmaceutical industry. Strategic Management Journal, 25(8‐9), 779-799.
    Nobi, A., Maeng, S. E., Ha, G. G., & Lee, J. W. (2013). Network topologies of financial market during the global financial crisis. arXiv preprint arXiv:1307.6974.
    Onnela, J. P., Kaski, K., & Kertész, J. (2004). Clustering and information in correlation based financial networks. The European Physical Journal B, 38(2), 353-362.
    Pakes, A., & Griliches, Z. (1980). Patents and R&D at the firm level: A first report. Economics letters, 5(4), 377-381.
    POSFAI, M., & BARABASI, A. L. (2016). Network science. Cambridge University Press.
    S. Wasserman, K. Faust, Social Network Analysis(1994).Cambridge University Press, Cambridge
    Singh, A., Singh, R. R., & Iyengar, S. R. S. (2020). Node-weighted centrality: a new way of centrality hybridization. Computational Social Networks, 7(1), 1-33.
    Tumminello, M., Aste, T., Di Matteo, T., & Mantegna, R. N. (2005). A tool for filtering information in complex systems. Proceedings of the National Academy of Sciences, 102(30), 10421-10426.
    Tumminello, M., Di Matteo, T., Aste, T., & Mantegna, R. N. (2007). Correlation based networks of equity returns sampled at different time horizons. The European Physical Journal B, 55(2), 209-217.
    White, E. P., Enquist, B. J., & Green, J. L. (2008). On estimating the exponent of power‐law frequency distributions. Ecology, 89(4), 905-912.
    Wu, L. (2015). Centrality of the supply chain network. Available at SSRN 2651786.
    Zhang, Y. (2009). Stock market network topology analysis based on a minimum spanning tree approach (Doctoral dissertation, Bowling Green State University).
    Zhao, L., Wang, G. J., Wang, M., Bao, W., Li, W., & Stanley, H. E. (2018). Stock market as temporal network. Physica A: Statistical Mechanics and its Applications, 506, 1104-1112.
    描述: 碩士
    國立政治大學
    經濟學系
    110258025
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0110258025
    資料類型: thesis
    顯示於類別:[經濟學系] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    802501.pdf5026KbAdobe PDF20檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋