政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/146473
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 114012/145044 (79%)
造访人次 : 52131219      在线人数 : 355
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/146473


    题名: 智慧微電網成本有效性之實證研究
    Empirical Study of the Cost-Effectiveness of a Smart Microgrid
    作者: 林宏濬
    Lin, Hung-Chun
    贡献者: 許志義
    吳學良

    Hsu, Jyh-Yih
    Wu, Shiue-Liang

    林宏濬
    Lin, Hung-Chun
    关键词: 智慧微電網
    再生能源
    太陽光電發電系統
    電池儲能系統
    電動公車
    柴油引擎發電機組
    孤島運轉
    成本有效性分析
    Smart microgrid
    Renewable energy
    Solar photovoltaic system
    Battery energy storage system
    Electric buses
    Diesel generators
    Islanded operation
    Cost-effectiveness analysis
    日期: 2023
    上传时间: 2023-08-02 13:41:51 (UTC+8)
    摘要: 隨著再生能源佔整體發電比重持續上升,電力間歇性問題也逐漸受到重視。因此,近年來各國政府皆持續推動微電網在其國內落地,協助緩解電力供應不穩定之問題並提升電網之韌性與供電品質,亦帶動民間業者投入微電網相關產業。
    本研究旨在透過成本有效性分析之研究方法,分別以參與者觀點與整體社會觀點統整國立彰化師範大學(以下簡稱彰師大)之校園型微電網於各模擬模式下的成本項及效益項,並利用淨現值法與益本比法,將各模擬模式下的效益項與成本項進行貨幣化並計算出淨效益後,依據分析結果闡述各模擬模式之經濟意涵。
    本研究結果顯示,彰師大以參與者觀點進行模擬模式一,即以靈活運用尖離峰價差達削峰填谷之負載管理時,目前尚不具成本有效性,但敏感度分析指出隨著尖離峰價差擴大將具經濟可行性。此時,若將現行電價制度之尖峰價上調2倍,離峰價下修0.5倍,則於三段式時間電價下,可產生約2,620萬元的淨效益。
    接著,彰師大以參與者觀點進行模擬模式二,即參與台電「電力交易平台」之即時備轉輔助服務時,在現行狀況下,尚不建議執行此政策,但敏感度分析表示隨著每日充電時數的下降,則將具有政策執行之優勢。此時,若將每日充電時數下降至2小時,則在三段式時間電價且容量費率為400元的情況下,可獲得約205萬元的淨現值。
    最後,彰師大以整體社會觀點進行模擬模式三,即參與台電「電力交易平台」之即時備轉輔助服務與執行孤島運轉模式提供電力給自身與社會第三方使用時,於現階段尚無經濟可行性,但此結果除尚未考量到其他社會價值、社會形象等無形效益外,於敏感度分析亦顯示隨孤島運轉運作之時數上升,則此模擬模式能為社會帶來價值。此時,若校方每年可執行孤島運轉18小時,則在三段式時間電價且容量費率為400元的情況下,可產出約481萬元的整體社會淨效益。
    With the continued increase in the proportion of renewable energy in the overall electricity generation mix, the intermittent nature of these energy sources has emerged as a pressing concern. As a result, governments worldwide have actively pursued the implementation of microgrid systems within their respective nations. These endeavors are aimed at addressing the challenges associated with the intermittency of renewable energy and improving the resilience and reliability of the existing power grid infrastructure. Furthermore, these initiatives have stimulated the participation of private sector actors, fostering investment and driving advancements in the field of microgrid-related industries.
    The objective of this research is to employ a cost-effectiveness analysis methodology to evaluate the cost items and benefits of the campus microgrid system at National Changhua University of Education (NCUE) from the perspectives of both participants and society as a whole. By utilizing the net present value method and the cost-benefit ratio method, the monetary values of the benefits and costs under different simulation scenarios are determined. Subsequently, the net benefits are calculated, and the economic implications of each simulation scenario are elucidated based on the analysis results.
    The findings of this study demonstrate that, based on the participant`s perspective, implementing Model 1, which involves the flexible utilization of peak-off-peak price differentials for peak shaving and load filling in the campus microgrid system of NCUE, is currently deemed impractical from a policy standpoint. However, sensitivity analysis indicates that widening the peak-off-peak price differential would result in economic benefits. Specifically, if the current electricity pricing system is adjusted by increasing the peak price by twice and decreasing the off-peak price by half, a net benefit of approximately 26.2 million NT dollars can be achieved under a three-tiered time-of-use electricity pricing scheme.
    Subsequently, adopting the participant`s viewpoint, implementing Model 2, which entails participating in the Taiwan Power Company`s "Electricity Trading Platform" for real-time reserve ancillary services, is not recommended for immediate execution. Nevertheless, sensitivity analysis suggests that reducing the daily charging hours would provide an advantageous scenario for policy implementation. For instance, by decreasing the daily charging hours to 2 hours under a three-tiered time-of-use electricity pricing scheme with a capacity fee rate of 400 NT dollars, an economic benefit of approximately 2.05 million NT dollars can be attained.
    Lastly, considering the societal perspective, simulating Model 3, which involves participating in the Taiwan Power Company`s "Electricity Trading Platform" for real-time reserve ancillary services and implementing islanded operation mode to provide power to the university and third-party users, currently does not yield economic benefits. However, it should be noted that this result does not take into account other intangible benefits such as social value and reputation. Moreover, sensitivity analysis also indicates that as the duration of islanded operation increases, this simulation model can generate value and enhance societal well-being. For example, if the university can implement 18 hours of islanded operation per year, under a three-tiered time-of-use electricity pricing scheme with a capacity fee rate of 400 NT dollars, an overall societal net benefit of approximately 4.81 million NT dollars can be realized.
    參考文獻: 一、中文文獻
    (一) 期刊論文
    1.李奕德、陳思涵、盧思穎、許舒雅、姜政綸 ( 2021 )。離島微電網經濟效益敏感度分析,《台灣能源期刊》,第 8 卷第 2 期,頁 133-147。
    2.江約珥 ( 2022 )。智慧綠能農牧場創新營運模式之成本有效性分析:經理者vs.全社會觀點,國立政治大學經濟系研究所碩士論文。
    3.陳廷政 ( 2017 )。澎湖望安島微電網規劃與分析,國立中山大學電機工程學系研究所碩士論文。
    4.陳彥榜 ( 2015 )。微電網內分散式電源及儲能容量最佳規劃,中原大學電機工程研究所碩士論文。
    5.郭彥廉 ( 2000 )。空氣汙染移動源管制政策之成本有效性分析,國立臺北大學資源管理研究所碩士論文。
    6.許志義、黃國暐 ( 2010 )。臺灣能源需求面管理成本效益分析之應用,能源經濟學術研討會。
    7.許志義、游晨廷 ( 2019 )。電動機車商業模式之經濟效益分析:共享經濟vs.電池租賃,《台電能源期刊》,第 6 卷第 2 期,頁 185-205。
    8.許志義、詹書瑋 ( 2020 )。智慧校園成本效益分析與營運模式之研究—以○○大學為例,《台電工程月刊》,第 858 期,頁 70-88。
    9.許志義、郭哲甫、蔡志祥、葉法明 ( 2021 )。「電動公車至電網」營運模式成本有效性分析:以台北市公車為例」。《台灣能源期刊》,第 8 卷第 2 期,頁 117-132。
    10.許尚溥 ( 2017 )。臺灣地區微電網技術發展與成本效益評估-以桃園龍潭微電網系統為例,國立臺北大學自然資源與環境管理研究所碩士論文。
    11.張永瑞、姜政綸、李奕德 ( 2015 )。微電網發展前景及技術剖析,《臺灣能源期刊》,第 2 卷第 3 期,頁 259-278。
    12.黃仁俊 ( 2023 )。電動巴士儲能對電網售電營運模式之成本有效性分析,國立政治大學經濟系研究所碩士論文。
    13.游原昌、徐献星、鄭宗杰 ( 2018 )。可隨插即用之救災型再生能源微電網,《臺灣能源期刊》,第 5 卷第 2 期,頁 185-198。
    14.劉庭瑋 ( 2017 )。台灣社會折現率之實證研究,國立臺北大學自然資源與環境管理研究所碩士論文。
    15.蔡志祥 ( 2019 )。電動汽車儲能對電網售電營運模式之成本有效性分析,國立政治大學經濟系研究所碩士論文。
    16.賴文泰 ( 2017 )。電動公車營運指標、財務效益分析與發展策略之研究,《運輸計畫季刊》,第 46 卷第 4 期,頁 377-398。

    (二) 公司與政府機構報告
    1.台電月刊 ( 2017 ) 。孤島不再孤獨 國內首座防災型微電網啟動,第 650 期。
    2.行政院原子能委員會 ( 2013 )。微電網智慧電能控制與管理。
    3.核能研究所 ( 2019 )。微電網的應用效益及其配套措施之分析。
    4.財團法人中技社 ( 2022 )。能源轉型強化穩定供電之策略研析。
    5.國發會 ( 2022 )。臺灣2050淨零排放路徑及策略總說明。
    6.經濟部能源局 ( 2022 )。區域電網儲能計畫。

    (三) 書籍
    1.蕭代基、鄭蕙燕、吳珮瑛、錢玉蘭、溫麗琪 ( 2002 )。《環境保護之成本效益分析:理論、方法與應用》。臺北:俊傑書局股份有限公司。

    二、英文文獻
    (一) 期刊論文
    1.Abbasi, M., Abbasi, E., Li, L., Aguilera, R. P., Lu, D. and Wang, F. (2023), Review on the Microgrid Concept, Structures, Components, Communication Systems, and Control Methods. Energies 2023, 16(1), 484.
    2.Adefarati, T. and Bansal, R.C. (2019), Reliability, economic and environmental analysis of a microgrid system in the presence of renewable energy resources. Applied Energy, 236, 1089-1114.
    3.Akindeji, K. T., Tiako, R. and Innocent E. Davidson (2019), Use of Renewable Energy Sources in University Campus Microgrid – A Review. IEEE Access, 76-83.
    4.Ahmed, M., Meegahapola, L., Vahidnia, A. and Datta, M. (2020), Stability and Control Aspects of Microgrid Architectures—A Comprehensive Review. IEEE Access, 8, 144730-144766.
    5.Barraza, O. and Estrada, M. (2021), Battery Electric Bus Network: Efficient Design and Cost Comparison of Different Powertrains, Sustainability, 13(9), 4745.
    6.Bleichrodt, H. and Quiggin, J. (1999), Life-cycle preferences over consumption and health: when is cost-effectiveness analysis equivalent to cost–benefit analysis? Journal of Health Economics, 18(6), 681-708.
    7.Cellini, S. R. and Kee, J. E. (2015), Cost-Effectiveness and Cost–Benefit Analysis, In Handbook of Practical Program Evaluation; John Wiley & Sons, 636–672.
    8.Chandak, S. and Rout, P. K. (2020), The implementation framework of a microgrid: A review. International Journal of Energy Research, 45(3), 3523-3547.
    9.David, R., Ngulube, P. and Dube, A. (2013), A cost-benefit analysis of document management strategies used at a financial institution in Zimbabwe: A case study. SA Journal of Information Management, 15(2), 1-10.
    10.Guibentif, T. M.M. and Vuille, F. (2022), Prospects and barriers for microgrids in Switzerland. Energy Strategy Reviews, 39, 100776.
    11.Hirsch, A., Parag, Y. and Guerrero, J. (2018), Microgrids: A review of technologies, key drivers, and outstanding issues. Renewable and Sustainable Energy Reviews, 90, 402-411.
    12.Najafi, J., Peiravi, A., Anvari-Moghaddam, A. and Guerrero, J. M. (2020), An Efficient Interactive Framework for Improving Resilience of Power-WaterDistribution Systems with Multiple Privately-Owned Microgrids. International Journal of Electrical Power & Energy Systems, 116, 105550.
    13.Parag, Y. and Ainspan, M. (2019), Sustainable microgrids: Economic, environmental and social costs and benefits of microgrid deployment. Energy for Sustainable Development, 52, 72-81.
    14.Patnaik, B., Mishra, M., Bansal, R. C. and Jena R. K. (2020), AC microgrid protection – A review: Current and future prospective. Applied Energy, 271, 115210.
    15.Saeed, M. H., Fangzong, W., Kalwar, B. A. and Iqbal, S. (2021), A Review on Microgrids’ Challenges & Perspectives. IEEE Access, 9, 166502-166517.
    16.Shahgholian, G. (2021), A brief review on microgrids: Operation, applications, modeling, and control. International Transactions on Electrical Energy Systems, 31(6), 1-28.
    17.Soshinskaya, M., Crijns-Graus, W. H. J., Guerrero J. M. and Vasquez J. C. (2014), Microgrids experiences, barriers and success factors. Renewable and Sustainable Energy Reviews, 40, 659-672.
    18.Ustun, T. S., Ozansoy, C. and Zayegh, A. (2011), Recent developments in microgrids and example cases around the world—A review. Renewable and Sustainable Energy Reviews, 15(8), 4030-4041.
    19.Vu, B. H., Husein M. A., Chung, I. Y. and Cho, J. (2018), Design of a grid-connected campus microgrid considering energy efficiency and financial feasibility. CIRED 2018 Ljubljana Workshop, 143.

    (二)國外官方報告
    1.International Energy Agency (2022), Net Zero by 2050-A Roadmap for the Global Energy Sector.
    2.Precedence Research (2022), Microgrid Market Size To Surpass Around USD 85.7 Bn By 2030.
    3.Western Governors’ Association (2021), Best of the West: Microgrids develop throughout region; Utah universities fund computer science; Conservation Corps rehabilitate habitat in Arizona; New Mexican middle schooler wins prestigious award.

    三、網路資源
    (一) 中文部分
    1.台達電子 ( 2022 年 12 月 30 日 )。加州案例:儲能助力再生能源併網的電力系統平行。
    https://blog.deltaww.com/energyinfrastructuresolutions/insight/power-system-balancing-with-high-penetration-of-vre/。
    2.林鳳琪 ( 2022 年 6 月 15 日 )。汰役廢電池重生!滅村部落靠「它」變身綠能先鋒。
    https://esg.gvm.com.tw/article/6478。
    3.陳芃暉 ( 2022 年 10-12 月 )。智慧電網的佈建與優勢,中鼎集團電子報第473期。
    https://www.ctci.com/e-newsletter/CH/473/technology/article-01.html。
    4.陳奕仲 ( 2021 年 6 月 23 日 )。全球2050能源淨零排放路徑,告訴我們什麼。
    https://e-info.org.tw/node/231489。
    5.許世穎 ( 2022 年 6 月 10 日 )。極端氣候來臨!人類的最後審判。
    https://www.charmingscitech.nat.gov.tw/post/theme06-climatechange。
    6.許志義 ( 2022 年 4 月 28 日 )。穩健電網韌性,開放微電網!才能讓台電成功轉型。
    https://www.gvm.com.tw/article/89387。
    7.許志義、黃俊凱 ( 2023 年 5 月 )。論歐盟配電系統調度分散式資源提供輔助服務的模式。
    https://www.iner.gov.tw/eip/msn.aspx?datatype=YW5hbHlzaXM%3D&id=MjIy。
    8.愛范兒 ( 2020 年 5 月 18 日 )。負電價並不稀奇?這其實是歐洲常態。https://technews.tw/2020/05/18/europe-usual-negative-electricity-price/。
    9.葛祐豪 ( 2023 年 1 月 16 日 )。去年六都停電次數 高雄排第三。https://news.ltn.com.tw/news/life/breakingnews/4186463。
    10.萬惠雯 ( 2022 年 7 月 1 日 )。儲能投入爆發 業者盼採FIT制度穩定品質。
    https://today.line.me/tw/v2/article/GgYk2BQ。
    11.黃惠聆 ( 2023 年 2 月 28 日 )。綠電需求熱,今年價格續看漲。
    https://ctee.com.tw/news/policy/815890.html。
    12.蔡宗武 ( 2021 年 4 月 28 日 )。台灣碳交易打造「驛日光屋」即日起於科工館展出。
    https://focus.586.com.tw/2021/04/28/p168684/。
    13.劉庭莉 ( 2022年 4 月 11 日 )。七原鄉可自主供電72小時 台電屏東防災型微電網啟用。
    https://e-info.org.tw/node/233823。

    (二) 英文部分
    1.Wood, S. (October 11,2021), Santa Rosa Chick-fil-A solar microgrid part of distributed-energy movement amid California grid issues.
    https://www.northbaybusinessjournal.com/article/article/solar-energy-upgrades-heat-up-with-chick-fil-a-santa-rosas-microgrid/。
    描述: 碩士
    國立政治大學
    經濟學系
    110258009
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0110258009
    数据类型: thesis
    显示于类别:[經濟學系] 學位論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    800901.pdf4079KbAdobe PDF20检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈