Reference: | 1. 林彥廷, 顏筱穎, 張乃軒, 林宏明, 韓仁毓, 楊國鑫, et al. 應用AI學習技術於坡地崩塌預測分析-以高雄市小林村為例. 土木水利. 2021;48(2):48-55. doi: 10.6653/MoCICHE.202104_48(2).0007. 2. Azmoon B, Biniyaz A, Liu Z. Use of High-Resolution Multi-Temporal DEM Data for Landslide Detection. Geosciences. 2022;12(10):378. 3. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2017;39(12):2481-95. doi: 10.1109/TPAMI.2016.2644615. 4. Bajracharya B, Bajracharya S. LANDSLIDE MAPPING OF THE EVEREST REGION USING HIGH RESOLUTION SATELLITE IMAGES AND 3D VISUALIZATION. 2008. 5. Bernat Gazibara S, Krkač M, Mihalić Arbanas S. Landslide inventory mapping using LiDAR data in the City of Zagreb (Croatia). Journal of Maps. 2019;15(2):773-9. doi: 10.1080/17445647.2019.1671906. 6. Borghuis AM, Chang K, Lee HY. Comparison between automated and manual mapping of typhoon‐triggered landslides from SPOT‐5 imagery. International Journal of Remote Sensing. 2007;28(8):1843-56. doi: 10.1080/01431160600935638. 7. Cascini L, Fornaro G, Peduto D. Analysis at medium scale of low-resolution DInSAR data in slow-moving landslide-affected areas. ISPRS Journal of Photogrammetry and Remote Sensing. 2009;64(6):598-611. doi: https://doi.org/10.1016/j.isprsjprs.2009.05.003. 8. Chen H, He Y, Zhang L, Yao S, Yang W, Fang Y, et al. A landslide extraction method of channel attention mechanism U-Net network based on Sentinel-2A remote sensing images. International Journal of Digital Earth. 2023;16(1):552-77. doi: 10.1080/17538947.2023.2177359. 9. Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille A. Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs. CoRR arXiv. 2014. 10. Chen L-C, Papandreou G, Schroff F, Adam H. Rethinking Atrous Convolution for Semantic Image Segmentation. 2017. 11. Chen L-C, Zhu Y, Papandreou G, Schroff F, Adam H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision – ECCV 2018. Cham: Springer International Publishing; 2018. p. 833-51. 12. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2018;40(4):834-48. doi: 10.1109/TPAMI.2017.2699184. 13. Cruden D, Varnes D. Landslides: Investigation and Mitigation. 1996. 14. Czuchlewski K, Weissel J, Kim Y. Polarimetric synthetic aperture radar study of the Tsaoling landslide generated by the 1999 Chi-Chi earthquake, Taiwan. Journal of Geophysical Research. 2003;108. doi: 10.1029/2003JF000037. 15. Ferretti A, Prati C, Rocca F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR Interferometry. Geoscience and Remote Sensing, IEEE Transactions on. 2000;38:2202-12. doi: 10.1109/36.868878. 16. Fiorucci F, Cardinali M, Carlà R, Rossi M, Mondini AC, Santurri L, et al. Seasonal landslide mapping and estimation of landslide mobilization rates using aerial and satellite images. Geomorphology. 2011;129(1):59-70. doi: https://doi.org/10.1016/j.geomorph.2011.01.013. 17. Gabriel AK, Goldstein RM, Zebker HA. Mapping small elevation changes over large areas: Differential radar interferometry. Journal of Geophysical Research. 1989;94:9183-91. 18. Ghorbanzadeh O, Blaschke T, Gholamnia K, Meena SR, Tiede D, Aryal J. Evaluation of Different Machine Learning Methods and Deep-Learning Convolutional Neural Networks for Landslide Detection. Remote Sensing. 2019;11(2):196. 19. Ghorbanzadeh O, Crivellari A, Ghamisi P, Shahabi H, Blaschke T. A comprehensive transferability evaluation of U-Net and ResU-Net for landslide detection from Sentinel-2 data (case study areas from Taiwan, China, and Japan). Scientific Reports. 2021;11(1):14629. doi: 10.1038/s41598-021-94190-9. 20. Ghorbanzadeh O, Shahabi H, Crivellari A, Homayouni S, Blaschke T, Ghamisi P. Landslide detection using deep learning and object-based image analysis. Landslides. 2022;19(4):929-39. doi: 10.1007/s10346-021-01843-x. 21. Girshick R. Fast R-CNN. 2015 IEEE International Conference on Computer Vision (ICCV)2015. p. 1440-8. 22. Girshick R, Donahue J, Darrell T, Malik J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. 2014 IEEE Conference on Computer Vision and Pattern Recognition2014. p. 580-7. 23. Guzzetti F, Manunta M, Ardizzone F, Pepe A, Cardinali M, Zeni G, et al. Analysis of Ground Deformation Detected Using the SBAS-DInSAR Technique in Umbria, Central Italy. Pure and Applied Geophysics. 2009;166(8):1425-59. doi: 10.1007/s00024-009-0491-4. 24. Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang K-T. Landslide inventory maps: New tools for an old problem. Earth-Science Reviews. 2012;112(1):42-66. doi: https://doi.org/10.1016/j.earscirev.2012.02.001. 25. Haeberlin Y, Turberg P, Retiere A, Senegas O, Parriaux A. VALIDATION OF SPOT-5 SATELLITE IMAGERY FOR GEOLOGICAL HAZARD IDENTIFICATION AND RISK ASSESSMENT FOR LANDSLIDES , MUD AND DEBRIS FLOWS IN MATAGALPA , NICARAGUA. 2004. 26. He K, Zhang X, Ren S, Sun J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2014;37. doi: 10.1109/TPAMI.2015.2389824. 27. Iverson R. Iverson, R.M.: Landslide triggering by rain infiltration. Water Resour. Res. 36, 1897-1910. Water Resources Research - WATER RESOUR RES. 2000;36. doi: 10.1029/2000WR900090. 28. Jaboyedoff M, Oppikofer T, Abellán A, Derron M-H, Loye A, Metzger R, et al. Use of LIDAR in landslide investigations: a review. Natural Hazards. 2012;61(1):5-28. doi: 10.1007/s11069-010-9634-2. 29. Ji S, Yu D, Shen C, Li W, Xu Q. Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks. Landslides. 2020;17(6):1337-52. doi: 10.1007/s10346-020-01353-2. 30. Kanungo DP, Arora MK, Sarkar S, Gupta RP. A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Engineering Geology. 2006;85(3):347-66. doi: https://doi.org/10.1016/j.enggeo.2006.03.004. 31. Lary DJ, Alavi AH, Gandomi AH, Walker AL. Machine learning in geosciences and remote sensing. Geoscience Frontiers. 2016;7(1):3-10. doi: https://doi.org/10.1016/j.gsf.2015.07.003. 32. Lauknes TR, Piyush Shanker A, Dehls JF, Zebker HA, Henderson IHC, Larsen Y. Detailed rockslide mapping in northern Norway with small baseline and persistent scatterer interferometric SAR time series methods. Remote Sensing of Environment. 2010;114(9):2097-109. doi: https://doi.org/10.1016/j.rse.2010.04.015. 33. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436-44. doi: 10.1038/nature14539. 34. Lei T, Zhang Y, Lv Z, Li S, Liu S, Nandi AK. Landslide Inventory Mapping From Bitemporal Images Using Deep Convolutional Neural Networks. IEEE Geoscience and Remote Sensing Letters. 2019;16(6):982-6. doi: 10.1109/LGRS.2018.2889307. 35. Li L, Qin Z, Zhang Q. Landslide Recognition Based on the Improved U-net. 2021 4th International Conference on Computer Science and Software Engineering (CSSE 2021). 2021. 36. Lin T-Y, Dollár P, Girshick R, He K, Hariharan B, Belongie S. Feature Pyramid Networks for Object Detection. 2016. 37. Liu J-K, Wong C-C, Huang J-H, Yang M-J. LANDSLIDE-ENHANCEMENT IMAGES FOR THE STUDY OF TORRENTIAL-RAINFALL LANDSLIDES. 2002. 38. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C-Y, et al. SSD: Single Shot MultiBox Detector. In: Leibe B, Matas J, Sebe N, Welling M, editors. Computer Vision – ECCV 2016. Cham: Springer International Publishing; 2016. p. 21-37. 39. Lu P, Stumpf A, Kerle N, Casagli N. Object-Oriented Change Detection for Landslide Rapid Mapping. IEEE Geoscience and Remote Sensing Letters. 2011;8(4):701-5. doi: 10.1109/LGRS.2010.2101045. 40. Ma Z, Mei G. Deep learning for geological hazards analysis: Data, models, applications, and opportunities. Earth-Science Reviews. 2021;223:103858. doi: https://doi.org/10.1016/j.earscirev.2021.103858. 41. Marcelino EV, Formaggio AR, Maeda EE. Landslide inventory using image fusion techniques in Brazil. International Journal of Applied Earth Observation and Geoinformation. 2009;11(3):181-91. doi: https://doi.org/10.1016/j.jag.2009.01.003. 42. Martha TR, Babu Govindharaj K, Vinod Kumar K. Damage and geological assessment of the 18 September 2011 Mw 6.9 earthquake in Sikkim, India using very high resolution satellite data. Geoscience Frontiers. 2015;6(6):793-805. doi: https://doi.org/10.1016/j.gsf.2013.12.011. 43. Martha TR, Kamala P, Jose J, Vinod Kumar K, Jai Sankar G. Identification of new Landslides from High Resolution Satellite Data Covering a Large Area Using Object-Based Change Detection Methods. Journal of the Indian Society of Remote Sensing. 2016;44(4):515-24. doi: 10.1007/s12524-015-0532-7. 44. Martha TR, Kerle N, Jetten V, van Westen CJ, Kumar KV. Characterising spectral, spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods. Geomorphology. 2010;116(1):24-36. doi: https://doi.org/10.1016/j.geomorph.2009.10.004. 45. Milletari F, Navab N, Ahmadi S-A. V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. 2016 Fourth International Conference on 3D Vision (3DV). 2016:565-71. 46. Mondini AC, Guzzetti F, Reichenbach P, Rossi M, Cardinali M, Ardizzone F. Semi-automatic recognition and mapping of rainfall induced shallow landslides using optical satellite images. Remote Sensing of Environment. 2011;115(7):1743-57. doi: https://doi.org/10.1016/j.rse.2011.03.006. 47. Moosavi V, Talebi A, Shirmohammadi B. Producing a landslide inventory map using pixel-based and object-oriented approaches optimized by Taguchi method. Geomorphology. 2014;204:646-56. doi: https://doi.org/10.1016/j.geomorph.2013.09.012. 48. Nava L, Bhuyan K, Meena SR, Monserrat O, Catani F. Rapid Mapping of Landslides on SAR Data by Attention U-Net. Remote Sensing. 2022;14(6):1449. 49. Park N-W, Chi K-H. Quantitative assessment of landslide susceptibility using high-resolution remote sensing data and a generalized additive model. International Journal of Remote Sensing - INT J REMOTE SENS. 2008;29:247-64. doi: 10.1080/01431160701227661. 50. Prakash N, Manconi A, Loew S. Mapping Landslides on EO Data: Performance of Deep Learning Models vs. Traditional Machine Learning Models. Remote Sensing. 2020;12(3):346. 51. Reichenbach P, Rossi M, Malamud BD, Mihir M, Guzzetti F. A review of statistically-based landslide susceptibility models. Earth-Science Reviews. 2018;180:60-91. doi: https://doi.org/10.1016/j.earscirev.2018.03.001. 52. Ren S, He K, Girshick R, Sun J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2015;39. doi: 10.1109/TPAMI.2016.2577031. 53. Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF, editors. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Cham: Springer International Publishing; 2015. p. 234-41. 54. Santangelo M, Cardinali M, Rossi M, Mondini AC, Guzzetti F. Remote landslide mapping using a laser rangefinder binocular and GPS. Nat Hazards Earth Syst Sci. 2010;10(12):2539-46. doi: 10.5194/nhess-10-2539-2010. 55. Schulz WH. Landslides mapped using LIDAR imagery, Seattle, Washington. 2004. 56. Shahabi H, Rahimzad M, Ghorbanzadeh O, Piralilou ST, Blaschke T, Homayouni S, et al. Rapid Mapping of Landslides from Sentinel-2 Data Using Unsupervised Deep Learning. 2022 IEEE Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS)2022. p. 17-20. 57. Shahabi H, Rahimzad M, Tavakkoli Piralilou S, Ghorbanzadeh O, Homayouni S, Blaschke T, et al. Unsupervised Deep Learning for Landslide Detection from Multispectral Sentinel-2 Imagery. Remote Sensing. 2021 doi: 10.3390/rs13224698. 58. Shaikh SH, Saeed K, Chaki N. Moving Object Detection Approaches, Challenges and Object Tracking. In: Shaikh SH, Saeed K, Chaki N, editors. Moving Object Detection Using Background Subtraction. Cham: Springer International Publishing; 2014. p. 5-14. 59. Shi W, Zhang M, Ke H, Fang X, Zhan Z, Chen S. Landslide Recognition by Deep Convolutional Neural Network and Change Detection. IEEE Transactions on Geoscience and Remote Sensing. 2021;59(6):4654-72. doi: 10.1109/TGRS.2020.3015826. 60. Stumpf A, Kerle N. Object-oriented mapping of landslides using Random Forests. Remote Sensing of Environment. 2011;115(10):2564-77. doi: https://doi.org/10.1016/j.rse.2011.05.013. 61. Tyagi A, Kamal Tiwari R, James N. A review on spatial, temporal and magnitude prediction of landslide hazard. Journal of Asian Earth Sciences: X. 2022;7:100099. doi: https://doi.org/10.1016/j.jaesx.2022.100099. 62. Wang H, Zhang L, Yin K, Luo H, Li J. Landslide identification using machine learning. Geoscience Frontiers. 2021;12(1):351-64. doi: https://doi.org/10.1016/j.gsf.2020.02.012. 63. Wolff Moine M, Puissant A, Malet JP. Detection of landslides from aerial and satellite images with a semi-automatic method. Application to the Barcelonnette basin (Alpes-de-Haute-Provence, France). Landslide Processes: From Geomorphological Mapping to Dynamic Modelling. 2009. 64. Yang S, Wang Y, Wang P, Mu J, Jiao S, Zhao X, et al. Automatic Identification of Landslides Based on Deep Learning. Applied Sciences. 2022;12(16):8153. 65. Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid Scene Parsing Network. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)2017. p. 6230-9. 66. Zhao ZQ, Zheng P, Xu ST, Wu X. Object Detection With Deep Learning: A Review. IEEE Transactions on Neural Networks and Learning Systems. 2019;30(11):3212-32. doi: 10.1109/TNNLS.2018.2876865. 67. Zhiqiang W, Jun L. A review of object detection based on convolutional neural network. 2017 36th Chinese Control Conference (CCC)2017. p. 11104-9. 68. Zou Z, Shi Z, Guo Y, Ye J. Object Detection in 20 Years: A Survey. 2019. |