政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/146300
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113656/144643 (79%)
造访人次 : 51736422      在线人数 : 618
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/146300


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/146300


    题名: 兩個獨立簡單隨機漫步在 d 維整數晶格之臨界行為
    The critical behavior of two independent simple random walks on Z^d lattices
    作者: 李柏駿
    Li, Bo-Jyun
    贡献者: 陳隆奇
    Chen, Lung-Chi
    李柏駿
    Li, Bo-Jyun
    关键词: 簡單隨機漫步
    懶惰隨機漫步
    格林函數
    位勢核
    逃脫機率
    選擇停止定理
    Simple random walk
    The lazy random walk
    Green’s function
    Potential kernel
    Escape probability
    Optional stopping theorem
    日期: 2023
    上传时间: 2023-08-02 13:02:39 (UTC+8)
    摘要: 在這篇論文中,我們介紹兩個獨立的簡單隨機漫步在 d 維整數晶
    格上的臨界行為。假設這兩個隨機漫步的起點分別為 a 和 b,且滿足
    2r < |a − b| < 2R 的條件。我們將研究在每個維度上,兩個獨立的簡單隨機漫步在距離小於 2r 之前距離超過 2R 的機率。也就是說,這是兩個獨立簡單隨機漫步的「逃脫機率」。
    為了解決這個問題,我們首先介紹了懶惰隨機漫步 Ln,它由兩個獨
    立的簡單隨機漫步的相對位置生成。我們討論了懶惰隨機漫步的格林函
    數 G(x),其中 x ∈ Zd 且 d ≥ 3,以及懶惰隨機漫步的勢能核 a(x),其中x ∈ Z2。我們將展示當 |x| 趨於無窮並且位於偶數位置時,G(x) 與簡單隨機漫步的格林函數相同並以相同的速度收斂。同樣地,a(x) 與簡單隨機漫步的勢能核相同並以相同的速度收斂。基於此,我們觀察到 G(Ln) 和 a(Ln)在沒有碰到原點的情況是鞅。通過應用選擇停止定理,我們建立了格林函數、勢能核和逃脫機率之間的聯繫。
    此外,我們也會探討兩個獨立簡單隨機漫步路徑的交錯次數的期望值,
    我們求得在維度 d ≥ 5 的整數晶格上,兩個獨立簡單隨機漫步的路徑交錯有限多次的機率等於 1;在維度 d ≤ 4 的整數晶格上,兩個獨立簡單隨機漫步的路徑交錯無窮多次的機率等於 1。
    In this thesis, we introduce the critical behavior of two independent simple random walks on the Zd lattices. We suppose that the starting points of these two random walks are denoted by a and b, respectively, and satisfy the condition 2r <|a−b| < 2R. Our objective is to investigate the probability of the distance between these two independent simple random walks exceeding 2R before it becomes less than 2r in any dimensional lattice. This probability is commonly referred to as the ”escape probability” of two independent simple random walks.
    To address this question, we first introduce the lazy random walk Ln, which is generated by the relative positions of two independent simple random walks. We delve into the discussion of the Green’s function G(x) of the lazy random walk, where x ∈ Zd and d ≥ 3, as well as the potential kernel a(x) of the lazy random walk, where x ∈ Z2. We aim to demonstrate that, as the magnitude of |x| tends to infinity and x lies on an even site, G(x) is equivalent to the Green’s function of the simple random walk and converges at the same rate. Likewise, a(x) is equivalent to the potential kernel of the simple random walk and converges at the same rate. Drawing from this, we observe that G(Ln) and a(Ln) act as martingales when they avoid reaching the origin. By applying the optional stopping theorem, we establish a connection between the Green’s function, potential kernel, and the escape probability.
    Furthermore, we explore the expected number of intersections between the paths of two independent simple random walks. We establish a proof on the Zd lattice, where d ≥ 5, the probability of the paths intersecting for a finite number
    of times is equal to 1. On the Zd lattice, where d ≤ 4, the probability of the paths intersecting for an infinite number of times is equal to 1.
    參考文獻: [1] Robert Brown. Brownian motion. Unpublished experiment, 38, 1827.
    [2] Edward A Codling, Michael J Plank, and Simon Benhamou. Random walk models in
    biology. Journal of the Royal society interface, 5(25):813–834, 2008.
    [3] Yasunari Fukai and Kôhei Uchiyama. Potential kernel for two-dimensional random walk.
    The Annals of Probability, 24(4):1979–1992, 1996.
    [4] Philippe Marchal. Constructing a sequence of random walks strongly converging to
    brownian motion. Discrete Mathematics & Theoretical Computer Science, 2003.
    [5] Karl Pearson. The problem of the random walk. Nature, 72(1865):294–294, 1905.
    [6] Georg Pólya. Über eine aufgabe der wahrscheinlichkeitsrechnung betreffend die irrfahrt
    im straßennetz. Mathematische Annalen, 84(1-2):149–160, 1921.
    [7] Serguei Popov. Two-Dimensional Random Walk: From Path Counting to Random
    Interlacements, volume 13. Cambridge University Press, 2021.
    [8] Enrico Scalas. The application of continuous-time random walks in finance and economics.
    Physica A: Statistical Mechanics and its Applications, 362(2):225–239, 2006.
    [9] Frank Spitzer. Principles of random walk, volume 34. Springer Science & Business Media,
    2013.
    [10] Kôhei Uchiyama. Green’s functions for random walks on ℤn. Proceedings of the London
    Mathematical Society, 77(1):215–240, 1998.
    [11] George H Weiss and Robert J Rubin. Random walks: theory and selected applications.
    Advances in Chemical Physics, 52:363–505, 1983.
    描述: 碩士
    國立政治大學
    應用數學系
    110751001
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0110751001
    数据类型: thesis
    显示于类别:[應用數學系] 學位論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    100101.pdf490KbAdobe PDF2116检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈