|
English
|
正體中文
|
简体中文
|
Post-Print筆數 : 27 |
Items with full text/Total items : 113822/144841 (79%)
Visitors : 51819144
Online Users : 466
|
|
|
Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/146299
|
Title: | 爆炸性折扣分支隨機漫步的位置分佈 The limiting distribution of the position in explosive discounted branching random walks |
Authors: | 鄒礎揚 Tsou, Chu-Yang |
Contributors: | 洪芷漪 Hong, Jyy-I 鄒礎揚 Tsou, Chu-Yang |
Keywords: | 分支過程 爆炸型 溯祖問題 分支隨機漫步 折扣分支隨 機漫步 Branching Process Explosive Case Colascence Problem Branching Random Wark Discounted Branching Random Walk |
Date: | 2023 |
Issue Date: | 2023-08-02 13:02:26 (UTC+8) |
Abstract: | 在 2013 年,Athreya 和 Hong 指出,在後代子孫數目期望值大於一的分 支隨機漫步中,當 n 趨近於無窮大時,第 n 代個體位置的比例分配會收斂到 伯努利分配。同時,如果我們隨機在第 n 代中隨機挑選一個個體,在 n 越來 越大時,其位置的分配會收斂到標準常態分配。 在這篇論文中,我們將考慮爆炸性折扣分支隨機漫步,研究第 n 代個 體的位置比例分配與任選之單一個體的位置分配在 n 趨近無窮大時的漸近 行為,並分別得到其收斂至伯努利分配與標準常態分配的結果。 In 2013, Athreya and Hong showed that, in the supercritical and explosive regular branching random walk, the empirical distribution of the positions in the nth generation converges to a Bernoulli distribution, and the position of any randomly chosen individual in the nth generation converges to a normal distribution as n → ∞. In this thesis, we consider the explosive discounted branching random walk, investigate the asymptotic behaviors of the positions of the individuals in the nth generation as n → ∞, and obtain their convergence in distribution. |
Reference: | [1] Krishna B Athreya, Peter E Ney, and PE Ney. Branching processes. Courier Corporation, 2004. [2] P. L. Davies. The simple branching process: a note on convergence when the mean is infinite. Journal of Applied Probability, 15(3):466–480, 1978. [3] KB Athreya. Coalescence in the recent past in rapidly growing populations. Stochastic Processes and their Applications, 122(11):3757–3766, 2012. [4] Jui-Lin Chi and Jyy-I Hong. The range of asymmetric branching random walk. Statistics & Probability Letters, 193:109705, 2023. [5] KB Athreya. Branching random walks. The Legacy of Alladi Ramakrishnan in the Mathematical Sciences, pages 337–349, 2010. [6] Krishna B Athreya and Jyy-I Hong. An application of the coalescence theory to branching random walks. Journal of Applied Probability, 50(3):893–899, 2013. |
Description: | 碩士 國立政治大學 應用數學系 109751010 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0109751010 |
Data Type: | thesis |
Appears in Collections: | [應用數學系] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
101001.pdf | | 347Kb | Adobe PDF2 | 136 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|
著作權政策宣告 Copyright Announcement1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.
2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(
nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(
nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.