政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/145908
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 114012/145044 (79%)
造訪人次 : 52101146      線上人數 : 395
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 理學院 > 心理學系 > 學位論文 >  Item 140.119/145908
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/145908


    題名: 文本情緒推論:開放式與封閉式詞彙分析
    Textual Emotion Inference: Closed- vs. Open- Vocabulary Analyses
    作者: 尤譯霆
    Yu, Yi-Ting
    貢獻者: 楊立行
    尤譯霆
    Yu, Yi-Ting
    關鍵詞: 文本分析
    情緒推論
    開放式詞彙分析
    封閉式詞彙分析
    日期: 2023
    上傳時間: 2023-07-06 16:57:24 (UTC+8)
    摘要: 人類是群性的物種,而語言正是群體機制運作中不可或缺的情報資訊。近年以心理建構主義(psychological constructionist)為基礎的概念行動理論(Conceptual Act Theory)強調人們對於理解語言中的情緒訊息依據可以是情緒詞彙,也可以是讀者自身攜帶情緒意涵的情節知識。心理學家一直希望從人們的話語中去了解個體的思考與情緒內容,然而,直到本世紀初拜電腦技術的進展,心理學家才開發出突破性的電腦化文本分析技術,該技術仰賴將不同詞彙歸類至數個詞類之中,並經過大規模的評定以確立它們作為文本分析效標的信效度。由於有事先定義好的詞類,因此研究者稱其為封閉式詞彙分析。封閉式詞彙分析其最大缺點在於,同一詞彙解釋方式都是固定的,並忽略了上下文脈絡。根據概念行動理論,文本分析中情緒詞類出現的頻次,在推論文本情緒價性時應能有一定程度的助益。然而,封閉式詞彙分析去除文本脈絡也可能會減損其推論文本情緒時的檢定力(power)。同時資訊科學家亦致力於讓機器具有理解人類語文的智能,受惠於大數據時代的來臨以及各類機器學習演算法的精進,資訊科學家研發的文本分析技術已經證明可透過大量文本有效抽取出其潛在特徵,這類沒有事先評定好的文本分析方式稱為開放式詞彙分析。由於不侷限於事先決定好的詞類,因此開放式詞彙分析可能會比較有機會掌握文本內上下文語義的脈絡。然而,開放式詞彙與封閉式詞彙分析的比較研究著實不多,多數情況仍是各自在各自領域內發展。本論文透過兩者的比較以此說明人類理解文本情緒意涵時,最重要的語義表徵是什麼。首先透過研究一擴大詞類範圍進行檢驗,發現蒐集更多可能參與表達情緒的詞彙有助於情緒推論的正確率,但效率不彰且提升幅度不大。顯示人類理解文本情緒意涵時的基本單元並非以詞類為基礎的語義表徵。研究二則比較兩種不同開放式詞彙分析,結果顯示人類理解文本情緒意涵時,最重要的是能夠保留上下脈絡的語義表徵。最後透過研究三對封閉式詞彙分析的改良嘗試,鞏固研究二的結果。
    參考文獻: 李姵儒(2018):《國中生情緒主題寫作文本之情緒詞彙特徵與心理健康相關研究》(碩士論文,國立臺灣師範大學),國立臺灣師範大學圖書館機構典藏。https://doi.org/10.6345/THE.NTNU.DEPC.012.2018.F02
    卓淑玲、陳學志、鄭昭明(2013)。台灣地區華人情緒與相關心理生理資料庫─中文情緒詞常模研究,中華心理學刊,55(4),493–523。http://dx.doi.org/10.6129/CJP.20131026
    胡中凡、陳彥丞、卓淑玲、陳學志、張雨霖、宋曜廷(2017)。1200個中文雙字詞的聯想常模與其被聯想反應參照表。教育心理學報,49(1),137-161。https://doi.org/10.6251/BEP.20161111
    黃金蘭、Chung, C. K.、Hui, N.、林以正、謝亦泰、程威詮、Lam, B.、Bond. M., Pennebaker, J. W.(2012)。中文版「語文探索與字詞計算」詞典之建立。中華心理學刊,54(2),185–201。http://dx.doi.org/10.6129/CJP.2012.5402.04
    楊立行、許清芳(2019)。社群媒體上分手文章的性別差異:文本分析取徑。中華心理學刊,61(3),209–230。https://doi.org/10.6129/CJP.201909_61(3).0003
    Baroni-Urbani, C., & Buser, M. W. (1976). Similarity of Binary Data. Systematic Zoology, 25(3), 251–259. JSTOR. https://doi.org/10.2307/2412493
    Barrett, L. F. (2014). The Conceptual Act Theory: A Précis. Emotion Review, 6(4), 292–297. https://doi.org/10.1177/1754073914534479
    Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet Allocation. J. Mach. Learn. Res., 3, 993–1022.
    Boyd, R. L., & Schwartz, H. A. (2021). Natural Language Analysis and the Psychology of Verbal Behavior: The Past, Present, and Future States of the Field. Journal of Language and Social Psychology, 40(1), 21–41. https://doi.org/10.1177/0261927X20967028
    Chang, C.-Y., Chen, Y.-C., Tsai, M.-N., Sung, Y.-T., Chang, Y.-L., Lin, S.-Y., Cho, S.-L., Chang, T.-H., & Chen, H.-C. (2022). The Corpus of Emotional Valences for 33,669 Chinese Words Based on Big Data. HCI in Business, Government and Organizations: 9th International Conference, HCIBGO 2022, Held as Part of the 24th HCI International Conference, HCII 2022, Virtual Event, June 26 – July 1, 2022, Proceedings, 141–152. https://doi.org/10.1007/978-3-031-05544-7_11
    Cohen, A. S., Minor, K. S., Najolia, G. M., & Hong, S. L. (2009). A laboratory-based procedure for measuring emotional expression from natural speech. Behavior Research Methods, 41(1), 204–212. https://doi.org/10.3758/BRM.41.1.204
    Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), 4171–4186. https://doi.org/10.18653/v1/N19-1423
    Eichstaedt, J. C., Kern, M. L., Yaden, D. B., Schwartz, H. A., Giorgi, S., Park, G., Hagan, C. A., Tobolsky, V. A., Smith, L. K., Buffone, A., Iwry, J., Seligman, M. E. P., & Ungar, L. H. (2021). Closed- and open-vocabulary approaches to text analysis: A review, quantitative comparison, and recommendations. Psychological Methods, 26(4), 398–427. https://doi.org/10.1037/met0000349
    Gernsbacher, M. A., Goldsmith, H. H., & Robertson, R. R. W. (1992). Do Readers Mentally Represent Characters’ Emotional States? Cognition and Emotion, 6(2), 89–111. https://doi.org/10.1080/02699939208411061
    Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. Proceedings of the National Academy of Sciences, 101(1), 5228. https://doi.org/10.1073/pnas.0307752101

    Griffiths, T. L., Steyvers, M., & Tenenbaum, J. B. (2007). Topics in semantic representation. Psychological Review, 114(2), 211–244. https://doi.org/10.1037/0033-295X.114.2.211
    Grün, B., & Hornik, K. (2011). topicmodels: An R Package for Fitting Topic Models. Journal of Statistical Software, 40(13), 1–30. https://doi.org/10.18637/jss.v040.i13
    Gygax, P., Garnham, A., & Oakhill, J. (2004). Inferring characters’ emotional states: Can readers infer specific emotions? Language and Cognitive Processes, 19(5), 613–639. https://doi.org/10.1080/01690960444000016
    Gygax, P., Oakhill, J., & Garnham, A. (2003). The representation of characters’ emotional responses: Do readers infer specific emotions? Cognition and Emotion, 17(3), 413–428. https://doi.org/10.1080/02699930244000048
    Huang, C.-R., Lee, L.-H., Qu, W., Hong, J.-F., & Yu, S. (2008). Quality Assurance of Automatic Annotation of Very Large Corpora: A Study based on heterogeneous Tagging System. Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC’08). Presented at the Marrakech, Morocco. Marrakech, Morocco: European Language Resources Association (ELRA). Retrieved from http://www.lrec-conf.org/proceedings/lrec2008/pdf/686_paper.pdf
    Iliev, R., Dehghani, M., & Sagi, E. (2015). Automated text analysis in psychology: Methods, applications, and future developments. Language and Cognition: An Interdisciplinary Journal of Language and Cognitive Science, 7(2), 265–290. https://doi.org/10.1017/langcog.2014.30
    Jaccard, P. (1912). The Distribution of the Flora in the Alpine Zone. The New Phytologist, 11(2), 37–50.
    Kahn, J. H., Tobin, R. M., Massey, A. E., & Anderson, J. A. (2007). Measuring Emotional Expression with the Linguistic Inquiry and Word Count. The American Journal of Psychology, 120(2), 263–286. https://doi.org/10.2307/20445398
    Kross, E., Verduyn, P., Boyer, M., Drake, B., Gainsburg, I., Vickers, B., Ybarra, O., & Jonides, J. (2019). Does counting emotion words on online social networks provide a window into people’s subjective experience of emotion? A case study on Facebook. Emotion, 19(1), 97–107. https://doi.org/10.1037/emo0000416
    Ku, L.-W., & Chen, H.-H. (2007). Mining opinions from the Web: Beyond relevance retrieval. Journal of the American Society for Information Science and Technology, 58(12), 1838–1850. https://doi.org/10.1002/asi.20630
    Lake, B. M., & Murphy, G. L. (2021). Word meaning in minds and machines. Psychological Review, Advance online publication. https://doi.org/10.1037/rev0000297
    Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological Review, 104(2), 211–240. https://doi.org/10.1037/0033-295X.104.2.211
    Lenci, A. (2018). Distributional Models of Word Meaning. Annual Review of Linguistics, 4(1), 151–171. https://doi.org/10.1146/annurev-linguistics-030514-125254
    Lee, L.-H., Li, J.-H., & Yu, L.-C. (2022). Chinese EmoBank: Building Valence-Arousal Resources for Dimensional Sentiment Analysis. ACM Trans. Asian Low-Resour. Lang. Inf. Process., 21(4). https://doi.org/10.1145/3489141
    Li, P.-H., Fu, T.-J., & Ma, W.-Y. (2020). Why Attention? Analyze BiLSTM Deficiency and Its Remedies in the Case of NER. Proceedings of the AAAI Conference on Artificial Intelligence, 34(05), 8236-8244. https://doi.org/10.1609/aaai.v34i05.6338
    Lin, S.-Y., Chen, H.-C., Chang, T.-H., Lee, W.-E., & Sung, Y.-T. (2019). CLAD: A corpus-derived Chinese Lexical Association Database. Behavior Research Methods, 51(5), 2310–2336. https://doi.org/10.3758/s13428-019-01208-2
    Lindquist, K. A., MacCormack, J. K., & Shablack, H. (2015). The role of language in emotion: Predictions from psychological constructionism. Frontiers in Psychology, 6, Article 444. https://doi.org/10.3389/fpsyg.2015.00444
    McDonnell, M., Owen, J. E., & Bantum, E. O. (2020). Identification of Emotional Expression With Cancer Survivors: Validation of Linguistic Inquiry and Word Count. JMIR Form Res, 4(10), e18246. https://doi.org/10.2196/18246
    Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Distributed Representations of Words and Phrases and Their Compositionality. Proceedings of the 26th International Conference on Neural Information Processing Systems, 2, 3111–3119.
    Mumper, M. L., & Gerrig, R. J. (2021). The Representation of Emotion Inferences. Discourse Processes, 58(8), 681–702. https://doi.org/10.1080/0163853X.2021.1882196
    Ng, B. C., Cui, C., & Cavallaro, F. (2019). The annotated lexicon of chinese emotion words. WORD, 65(2), 73–92. https://doi.org/10.1080/00437956.2019.1599543
    Pennebaker, J. W., & Beall, S. K. (1986). Confronting a traumatic event: Toward an understanding of inhibition and disease. Journal of Abnormal Psychology, 95(3), 274–281. https://doi.org/10.1037/0021-843X.95.3.274
    Pennebaker, J. W., Booth, R. J., & Francis, M. E. (2007). Linguistic Inquiry and Word Count: LIWC [Computer software]. Austin, TX: LIWC.net.
    Pennebaker, J. W., Mehl, M. R., & Niederhoffer, K. G. (2003). Psychological Aspects of Natural Language Use: Our Words, Our Selves. Annual Review of Psychology, 54(1), 547–577. https://doi.org/10.1146/annurev.psych.54.101601.145041
    Poria, S., Hazarika, D., Majumder, N., & Mihalcea, R. (2020). Beneath the Tip of the Iceberg: Current Challenges and New Directions in Sentiment Analysis Research. IEEE Transactions on Affective Computing. Advanced online publication. https://doi.org/10.1109/TAFFC.2020.3038167
    Reimers, N., & Gurevych, I. (2019). Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, 3980–3990. https://doi.org/10.18653/v1/D19-1410
    Robertson, S. (2004). Understanding inverse document frequency: On theoretical arguments for IDF. Journal of Documentation, 60(5), 503–520. https://doi.org/10.1108/00220410410560582
    Rude, S. S., Gortner, E.-M., & Pennebaker, J. W. (2004). Language use of depressed and depression-vulnerable college students. Cognition and Emotion, 18(8), 1121–1133. https://doi.org/10.1080/02699930441000030
    Settanni, M., & Marengo, D. (2015). Sharing feelings online: Studying emotional well-being via automated text analysis of Facebook posts. Frontiers in Psychology, 6, 1045. https://doi.org/10.3389/fpsyg.2015.01045
    Sun, J., Schwartz, H. A., Son, Y., Kern, M. L., & Vazire, S. (2020). The language of well-being: Tracking fluctuations in emotion experience through everyday speech. Journal of Personality and Social Psychology, 118(2), 364–387. https://doi.org/10.1037/pspp0000244
    Tan, P.-N., Kumar, V., & Srivastava, J. (2004). Selecting the right objective measure for association analysis. Knowledge Discovery and Data Mining (KDD 2002), 29(4), 293–313. https://doi.org/10.1016/S0306-4379(03)00072-3
    Tausczik, Y. R., & Pennebaker, J. W. (2010). The Psychological Meaning of Words: LIWC and Computerized Text Analysis Methods. Journal of Language and Social Psychology, 29(1), 24–54. https://doi.org/10.1177/0261927X09351676
    Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. In U. von Luxburg, I. Guyon, & S. Bengio (Eds.), Proceedings of the 31st international conference on neural information processing systems (pp. 6000-6010). Curran Associates. https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
    Wang, W., Hernandez, I., Newman, D. A., He, J., & Bian, J. (2016). Twitter Analysis: Studying US Weekly Trends in Work Stress and Emotion. Applied Psychology, 65(2), 355–378. https://doi.org/10.1111/apps.12065
    Yu, L.-C., Lee, L.-H., & Wong, K.-F. (2016). Overview of the IALP 2016 shared task on Dimensional Sentiment Analysis for Chinese Words. 2016 International Conference on Asian Language Processing (IALP), 156–160. https://doi.org/10.1109/IALP.2016.7875957
    Yu, L.-C., Lee, L.-H., Hao, S., Wang, J., He, Y., Hu, J., Lai, K. R., & Zhang, X. (2016). Building Chinese Affective Resources in Valence-Arousal Dimensions. Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 540–545. https://doi.org/10.18653/v1/N16-1066
    Yu, L. C., Lee, L. H., Wang, J., & Wong, K. F. (2017). IJCNLP-2017 Task 2: Dimensional Sentiment Analysis for Chinese Phrases. Proceedings of the IJCNLP 2017, Shared Tasks, 9–16. https://aclanthology.org/I17-4002
    Zhang, T., Kishore, V., Wu, F., Weinberger, K. Q., & Artzi, Y. (2020). BERTScore: Evaluating Text Generation with BERT. International Conference on Learning Representations. https://openreview.net/forum?id=SkeHuCVFDr
    Zhao, N., Jiao, D., Bai, S., & Zhu, T. (2016). Evaluating the Validity of Simplified Chinese Version of LIWC in Detecting Psychological Expressions in Short Texts on Social Network Services. PLOS ONE, 11(6), e0157947. https://doi.org/10.1371/journal.pone.0157947
    描述: 碩士
    國立政治大學
    心理學系
    108752001
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0108752001
    資料類型: thesis
    顯示於類別:[心理學系] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    200101.pdf2504KbAdobe PDF2178檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋