English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52551590      Online Users : 765
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/145837


    Title: 投資組合管理:Black-Litterman模型結合不同機器學習方法
    Portfolio Management: Black-Litterman Portfolios with Different Machine Learning Derived Views
    Authors: 李宏澤
    Li, Hung-Tze
    Contributors: 蕭明福
    廖四郎

    Shaw, Ming-fu
    Liao, Szu-Lang

    李宏澤
    Li, Hung-Tze
    Keywords: Black-Litterman模型
    共變異數估計
    機器學習模型
    Black-Litterman model
    Covariance matrix estimation
    Machine learning
    Date: 2023
    Issue Date: 2023-07-06 16:41:26 (UTC+8)
    Abstract: 本研究嘗試以不同機器學習方法及不同預測目標,預測資產價格漲跌方向與幅度並結合Black-Litterman模型,建構全球化之投資組合資產配置。以金融資產之價量指標、技術指標及Fama-French三因子為輸入變數,在資料處理上避免使用KNN方式填補遺失值,確保資料的正確性。將機器學習模型預測結果代入Black-Litterman模型中的投資者觀點,結合不同共變異數估計方法,比較在不同投資策略下資產配置的績效表現。
    實證結果發現,Ledoit-Wolf Shrinkage Variance Estimate為最佳的共變異數估計方法,在分別預測價格漲跌與幅度時,XGBoost有較高的準確率;在直接預測價格漲跌與幅度時, Random Forest有較高的準確率;而在績效表現上,SVM模型於極大化夏普比率與超額報酬-風險值比率時,能有效地分散投資及降低風險;於測試集中,Random Forest直接預測價格漲跌與幅度的績效表現長時間優於其他模型,直到最後三個月,使用分別預測的方式能創造大量報酬,最後以XGBoost分別預測價格漲跌與幅度獲得最高的累積報酬率,並且超越iShares Russell 1000 ETF及直接預測價格漲跌與幅度的模型,造成模型表現差異的原因則源於模型組成與變數選擇。
    This research attempts to use different machine learning methods and different forecasting objectives to predict the direction and volatility of asset price. Subsequently, combine the Black-Litterman model to construct a global portfolio asset allocation. Using the price and volume indicators of financial assets, technical indicators and the Fama-French three factors model as input variables. Additionally, avoid using the KNN method to fill in missing values in data processing to ensure the correctness of the data. Substitute the prediction results of the machine learning model into the investor`s point of view in the Black-Litterman model and combine different covariance estimation methods to compare the performance of asset allocation under different investment strategies.
    The empirical results show that Ledoit-Wolf shrinkage variance estimate is the best covariance estimation method. In addition, XGBoost has a higher accuracy rate in separately predicting the direction and volatility of price; Random Forest has a higher accuracy rate in direction predicting. In terms of performance, SVM model can effectively diversify investments and reduce risk when maximizing the Sharpe ratio and VaR. In test data, using Random Forest to predict the direction and volatility directly outperforms others for a long time. Until last three months, the way of predicting separately can generate large returns. Finally, XGBoost predicts separately has the highest final cumulative return, which even better than the iShares Russell 1000 ETF and the models which predict directly. The reason for the difference in model performance is due to the model composition and variable selection.
    Reference: [1] Ai, X. W., Hu, T., Li, X. & Xiong, H. (2010). Clustering High-frequency Stock Data for Trading Volatility Analysis. 2010 Ninth International Conference on Machine Learning and Applications, 333-338.
    [2] Beach, S.L. & Orlov, A.G. (2007). An application of the Black–Litterman model with EGARCH-M-derived views for international portfolio management. Fin Mkts Portfolio Mgmt, 21, 147–166.
    [3] Best, M. J. & Grauer, R. R. (1991). On the Sensitivity of Mean-Variance-Efficient Portfolios to Changes in Asset Means: Some Analytical and Computational Results. The Review of Financial Studies, 4(2), 315–342.
    [4] Black, F., & Litterman, R. (1991). Asset allocation: combining investor views with market equilibrium. The Journal of Fixed Income, 1(2), 7-18.
    [5] Black, F., & Litterman, R. (1992). Global portfolio optimization. Financial Analysts Journal, 48(5), 28-43.
    [6] Chen, T. & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794.
    [7] Donthireddy, P. (2018). Black-Litterman portfolio with machine learning derived views. https://doi.org/10.13140/RG.2.2.26727.96160
    [8] Fama, E., & French, K. (2004). The Capital Asset Pricing Model: Theory and Evidence. Journal of Economic Perspectives. 18(3), 25-46.
    [9] Henrique, B. M., Sobreiro, V. A., & Kimura, H. (2019). Literature review: Machine learning techniques applied to financial market prediction. Expert Syst. Appl., 124, 226–251.
    [10] Markowitz, H. (1952). Portfolio Selection. Journal of Finance. 7(1), 77-99.
    [11] Meucci, A. (2010). The Black litterman Approach: Original Model and Extensions. Download from: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1117574.
    [12] Michaud, R. O. (1989). The Markowitz Optimization Enigma: Is Optimized Optimal? Financial Analysts Journal, 31-42.
    [13] Mossin, J. (1966). Equilibrium in a Capital Asset Market. Econometrical, 34(4), 768–783.
    [14] Ledoit O. & Wolf, M. (2004). A well-conditioned estimator for large-dimensional covariance matrices. J. Multivariate Anal. 88 (2), 365–4.
    [15] Ledoit O. & Wolf, M. (2021). Shrinkage estimation of large covariance matrices: Keep it simple, statistician? J. Multivariate Anal. 186.
    [16] Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. Journal of Finance, 19 (3), 425-442.
    [17] Treynor, J. L. (1961). Market Value, Time, and Risk. Unpublished manuscript.
    [18] Treynor, J. L. (1962). Toward a Theory of Market Value of Risky Assets. Unpublished manuscript. A final version was published in 1999, in Asset Pricing and Portfolio Performance: Models, Strategy and Performance Metrics. Robert A. Krawczyk (editor) London: Risk Books, 15–22.
    [19] Zhang, C. & Tang, H. (2022). Empirical Research on Multifactor Quantitative Stock Selection Strategy Based on Machine Learning. 2022 3rd International Conference on Pattern Recognition and Machine Learning (PRML), 380-383.
    [20] Zhu, Y. (2021). Research on Financial Risk Control Algorithm Based on Machine Learning. 2021 3rd International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI), 16-19.
    Description: 碩士
    國立政治大學
    經濟學系
    110258038
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0110258038
    Data Type: thesis
    Appears in Collections:[經濟學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    803801.pdf2787KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback