English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114012/145044 (79%)
Visitors : 52109091      Online Users : 50
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/145807


    Title: 馬來西亞股市回報率波動模式的建模:GARCH 與 EGARCH
    Modelling of Volatility Patterns on Malaysia Stock Market Returns: GARCH vs EGARCH
    Authors: 穆罕默德
    Mahdi, Muhammad Bin Muhammad
    Contributors: 蔡政憲
    Tsai, Cheng-Hsien
    穆罕默德
    Muhammad Bin Muhammad Mahdi
    Keywords: EGARCH
    OPR
    波動性
    EGARCH
    OPR
    Volatility
    Date: 2023
    Issue Date: 2023-07-06 16:34:39 (UTC+8)
    Abstract: Stock price volatility pattern is an imperative aspect of financial analysis, and the use of machine learning models using python has become increasingly important. Two popular models for stock price prediction are the symmetric generalised autoregressive conditional heteroskedasticity (GARCH) and the asymmetric exponential generalised autoregressive conditional heteroskedasticity (EGARCH) models. This study aims to compare the effectiveness of GARCH and EGARCH models in analysing the volatility of the Malaysia stock market.
    To conduct this study, I collected five year daily stock price data of FTSE Bursa Malaysia KLCI (FBM KLCI) listed on the Bursa Malaysia stock exchange from January 1, 2018, to December 31, 2022. I used this data to train and test both GARCH and EGARCH models and compared their performance in analysing long-term volatility in the Malaysia stock market. The result shows that EGARCH(1,1) was the best model among the four tested in capturing volatility of the FBM KLCI during the period of frequent OPR hikes.
    Reference: Achala, L., K., J. G., K., P. R., Bishal, G. (2015). Modelling and Forecasting of Price Volatility: An Application of GARCH and EGARCH Models. Agricultural Economics Research Review. 28(1), 73-82.

    Arnold, T. W. (2010). Uninformative Parameters and Model Selection Using Akaike’s Information Criterion. Journal of Wildlife Management. 74(6), 1175-1178.

    Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics. 31, 307-327.

    Chang, T. Y., Hartzmark, S. M., Solomon, D. H., Soltes, E. F. (2016). Being Surprised by the Unsurprising: Earnings Seasonality and Stock Returns. The Review of Financial Studies. 30, 281–323.

    Chen, J., Hong, H. (2002). Discussion of “Momentum and Autocorrelation in Stock Returns”. The Review of Financial Studies. 15, 565–574.

    Chou, R. Y. (1988). Volatility Persistence and Stock Valuations: Some Empirical Evidence Using GARCH. Journal of Applied Econometrics. 3(4), 279-294.

    Dash, R., Dash, P. K., Bisoi, R.T. (2015). A Differential Harmony Search Based Hybrid Interval Type2 Fuzzy EGARCH Model for Stock Market Volatility Prediction. International Journal of Approximate Reasoning. 59, 81-104.

    Dehay, D., Leskow, J. (1995). Testing stationarity for stock market data. Economics Letters. 50, 205-212.

    Domain D. L., Louton, D. A. (1997). A threshold autoregressive analysis of stock returns and real economic activity. International Review of Economics and Finance. 6,167-179.

    Endri, E., Abidin, Z., Simanjuntak, T. P., Nurhayati, I. (2020). Indonesian Stock Market Volatility: GARCH Model. Montenegrin Journal of Economics. 16(2), 7-17.

    Engle, R. F. (1982). Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica, Journal of The Econometric Society. 50, 987-1007.

    Fama E. F. (1965). Random Walks in Stock Market Prices. Taylor & Francis, Ltd. 21(5), 55-59.

    Faugère, Christophe and Shawky, Hany A. (2005). Volatility and Institutional Investor Holdings in a Declining Market: A Study of NASDAQ During the Year 2000. Available at SSRN: https://ssrn.com/abstract=480982

    Gultekin, M. N., Gultekin, N. B. (1983). Stock Market Seasonality International Evidence. Journal of Financial Economics. 12, 469-481.

    Hinich, M. J., Patterson, D. M. (1985). Evidence of Nonlinearity in Daily Stock Returns. Journal of Business & Economic Statistics. 3, 69-77.

    Hoque, H. A. A. B., Kim, J. H., Pyun, C. S. (2016). A comparison of variance ratio tests of random walk: A case of Asian emerging stock markets. International Review of Economics and Finance. 16, 488-502.

    Keim, D. B. (1983). Size-related anomalies and stock return seasonality: Further empirical evidence. Journal of Financial Economics. 12, 13-32.

    Lewellen, J. (2002). Momentum and Autocorrelation in Stock Returns. The Review of Financial Studies. 15, 533–564.

    Lim, C. M., Sek, S. K. (2013). Comparing the performances of GARCH-type models in capturing the stock market volatility in Malaysia. Procedia Economics and Finance. 5, 478 – 487.

    Lim, K. P., Luo, W., Kim, J. H. (2011). Are US stock index returns predictable? Evidence from automatic autocorrelation-based tests. Applied Economics. 45, 953-962.

    Lukacs, E. (1942). A Characterization of the Normal Distribution. The Annals of Mathematical Statistics. 13, 91-93

    Nelson, D. B. (1991). Conditional Heteroskedasticity in Asset Returns: A New Approach. Econometrica, Journal of The Econometric Society. 59, 347-370.

    Pagan, A. R., Schwert, G. W. (1990). Testing for Covariance Stationarity in Stock Market Data. Economics Letters. 33, 165-170.

    Rozeff, M. S., Kinney, W. R. (1976). Capital Market Seasonality: The Case of Stock Returns. Journal of Financial Economics. 3, 379-402.

    Sariannidis, N., Giannarakis, G., Litinas, N., Konteos, G. (2010). GARCH Examination of Macroeconomic Effects on U.S. Stock Market: A Distinction Between the Total Market Index and the Sustainability Index. European Research Studies. 13(1).

    Schwert, G. W. (1989). Why Does Stock Market Volatility Change Over Time? The Journal of Finance. 44(5), 1115-1153.

    St. Pierre, E. F. (1998). Estimating EGARCH-M models: Science or art? The Quarterly Review of Economics and Finance. 38(2), 167-180.

    Wu, Z., Huang, N. E. (2004). A study of the characteristics of white noise using the empirical mode decomposition method. Royal Society. 460(2046).

    Yong, J. N. C., Ziaei, S. M., & R Szulczyk, K. (2021). The Impact of Covid-19 Pandemic on Stock Market Return Volatility: Evidence from Malaysia and Singapore. Asian Economic and Financial Review, 11(3), 191–204.
    Description: 碩士
    國立政治大學
    國際經營管理英語碩士學位學程(IMBA)
    110933058
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0110933058
    Data Type: thesis
    Appears in Collections:[國際經營管理英語碩士學程IMBA] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2150View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback