政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/145683
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 114014/145046 (79%)
造访人次 : 52055729      在线人数 : 73
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 資訊管理學系 > 學位論文 >  Item 140.119/145683


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/145683


    题名: 直播主與直播電商特徵對消費者衝動性購買意圖之影響
    The role of broadcaster and live streaming commerce characteristics on customer`s impulsive buying intention
    作者: 陳毓航
    Chen, Yu-Hang
    贡献者: 洪為璽
    Hung, Wei-Hsi
    陳毓航
    Chen, Yu-Hang
    关键词: 直播電商
    心流理論
    信任
    衝動購買意圖
    S-O-R理論
    Live streaming commerce
    Flow theory
    Trust
    Impulsive buying intention
    S-O-R theory
    日期: 2023
    上传时间: 2023-07-06 15:09:04 (UTC+8)
    摘要: 隨著新冠疫情的爆發與媒體技術的蓬勃發展,直播電商(Live Streaming Commerce)作為一種新型態的銷售模式,其市場在近幾年有了飛快的成長。直播 電商的出現不僅提供了消費者更為真實的購物體驗之外,也讓購物過程變得更具 互動性與娛樂性。根據市場調查,許多消費者們認為衝動購買是直播電商中一個 很重要的問題,然而過往的研究主要專注在消費者使用直播電商的動機、顧客投 入以及影響購買意圖的因素,在衝動購買上的研究較少被討論。因此本研究以 S- O-R 理論作為研究框架,從直播主特徵與直播電商特徵兩個面向探討對消費者衝 動購買意圖的影響。本研究透過 427 位曾經使用過直播電商使用者的調查,來驗 證本研究提出的模型和假設。研究結果顯示,直播主特徵(專業性、相似性、情緒 感染力)與直播電商特徵(資訊性、娛樂性、互動性、偶遇性)是影響消費者信任與 心流體驗的重要因素,而信任與心流體驗對衝動購買意圖有正向顯著的影響。本 研究延伸了直播電商的研究,並拓展了心流理論的研究範圍,上述研究結果可作為在直播電商中類似研究的參考依據,並提供直播主在經營直播上的一些參考。
    With the outbreak of the COVID-19 pandemic and the flourishing development of media technology, Live streaming commerce has emerged as a new form of sales model, and its market has experienced rapid growth in recent years. Live streaming commerce not only provides consumers with a more authentic shopping experience but also makes the shopping process more interactive and entertaining. According to market research, many consumers consider impulse buying to be a significant issue in live streaming commerce. However, previous studies have mainly focused on consumer motivations, customer engagement, and factors influencing purchase intentions, with less attention given to research on impulse buying. Therefore, this study adopts the S- O-R (Stimulus-Organism-Response) theory as a research framework to examine the influence of two aspects, namely the characteristics of streamer and the characteristics of live streaming commerce, on consumers` impulse buying intentions. This study validated the proposed model and hypotheses through a survey of 427 users who have used live streaming commerce before. The results of the study indicate that the characteristics of streamer (Expertise, Similarity, Emotional Contagion) and the characteristics of live streaming commerce (Informativeness, Entertainment, Interactivity, Serendipity) are important factors influencing consumer trust and flow experience. Additionally, trust and flow experience have a significant positive impact on impulse buying intentions. This study extends the research on live streaming commerce and expands the scope of flow theory. The aforementioned research findings can serve as a reference for similar studies in the field of live streaming commerce and provide insights for streamers in managing their live streams.
    參考文獻: Al-Natour, S., Benbasat, I., & Cenfetelli, R. (2011). The adoption of online shopping assistants: Perceived similarity as an antecedent to evaluative beliefs. Journal of the Association for Information Systems, 12(5), 2.
    Bansal, H. S., & Voyer, P. A. (2000). Word-of-mouth processes within a services purchase decision context. Journal of Service Research, 3(2), 166-177.
    Bao, Z., & Yang, J. (2022). Why online consumers have the urge to buy impulsively: roles of serendipity, trust and flow experience. Management Decision, 60(12), 3350-3365.
    Beatty, S. E., & Ferrell, M. E. (1998). Impulse buying: Modeling its precursors. Journal of Retailing, 74(2), 169-191.
    Bigné, E., Ruiz-Mafé, C., & Badenes-Rocha, A. (2023). The influence of negative emotions on brand trust and intention to share cause-related posts: A neuroscientific study. Journal of Business Research, 157, 113628.
    Cai, J., Li, X., Li, Y., & Song, S. (2020). Research on the Influence of Pinduoduo Group-Buying Mode on Consumers` Impulse Buying, Proceedings of the 20th International Conference on Electronic Business, 414-423.
    Cai, J., & Wohn, D. Y. (2019). Live streaming commerce: Uses and gratifications approach to understanding consumers’ motivations, Proceedings of the 52nd Hawaii International Conference on System Sciences, 2548-2557.
    Cai, J., Wohn, D. Y., Mittal, A., & Sureshbabu, D. (2018). Utilitarian and hedonic motivations for live streaming shopping. Proceedings of the 2018 ACM International Conference on Interactive Experiences for TV and Online Video,81-88.
    Cao, J., Li, J., Wang, Y., & Ai, M. (2022). The Impact of Self-Efficacy and Perceived Value on Customer Engagement under Live Streaming Commerce Environment. Security and Communication Networks, 2022.
    Chan, T. K., Cheung, C. M., & Lee, Z. W. (2017). The state of online impulse-buying research: A literature analysis. Information & Management, 54(2), 204-217.
    Chen, C.-C., & Lin, Y.-C. (2018). What drives live-stream usage intention? The perspectives of flow, entertainment, social interaction, and endorsement. Telematics and Informatics, 35(1), 293-303.
    Chen, C.-C., & Yao, J.-Y. (2018). What drives impulse buying behaviors in a mobile auction? The perspective of the Stimulus-Organism-Response model. Telematics and Informatics, 35(5), 1249-1262.
    Chen, C.-S., Lu, H.-P., & Luor, T. (2018). A new flow of Location Based Service mobile games: Non-stickiness on Pokémon Go. Computers in Human Behavior,89, 182-190.
    Chen, Y., Lu, Y., Wang, B., & Pan, Z. (2019). How do product recommendations affect impulse buying? An empirical study on WeChat social commerce. Information & Management, 56(2), 236-248.
    Chuah, S. H.-W., & Yu, J. (2021). The future of service: The power of emotion in human-robot interaction. Journal of Retailing and Consumer Services, 61, 102551.
    Chung, N., & Kwon, S. J. (2009). Effect of trust level on mobile banking satisfaction: a multi-group analysis of information system success instruments. Behaviour & Information Technology, 28(6), 549-562.
    Chung, N., Song, H. G., & Lee, H. (2017). Consumers’ impulsive buying behavior of restaurant products in social commerce. International Journal of Contemporary Hospitality Management, 29(2), 709-731.
    Cohen, J. (2013). Statistical power analysis for the behavioral sciences. Academic press.
    Coley, A., & Burgess, B. (2003). Gender differences in cognitive and affective impulse buying. Journal of Fashion Marketing and Management: An International Journal, 7(3), 282-295.
    Csikszentmihalhi, M. (2020). Finding flow: The psychology of engagement with everyday life. Hachette UK.
    Csikszentmihalyi, M. (1990). Flow. The Psychology of Optimal Experience. New York (HarperPerennial) 1990.
    Cui, Y., Zhu, J., & Liu, Y. (2022). Exploring the Social and Systemic Influencing Factors of Mobile Short Video Applications on the Consumer Urge to Buy Impulsively. Journal of Global Information Management (JGIM), 30(1), 1-23.
    Dittmar, H., Beattie, J., & Friese, S. (1995). Gender identity and material symbols: Objects and decision considerations in impulse purchases. Journal of Economic Psychology, 16(3), 491-511.
    Du, J., Fan, X., & Feng, T. (2011). Multiple emotional contagions in service encounters. Journal of the Academy of Marketing Science, 39, 449-466.
    Edwards, S. M., Lee, J. K., & Ferle, C. L. (2009). Does place matter when shopping online? Perceptions of similarity and familiarity as indicators of psychological distance. Journal of Interactive Advertising, 10(1), 35-50.
    Eroglu, S. A., Machleit, K. A., & Davis, L. M. (2001). Atmospheric qualities of online retailing: A conceptual model and implications. Journal of Business Research, 54(2), 177-184.
    Eroglu, S. A., Machleit, K. A., & Davis, L. M. (2003). Empirical testing of a model of online store atmospherics and shopper responses. Psychology & Marketing, 20(2), 139-150.
    Ettis, S. A. (2017). Examining the relationships between online store atmospheric color, flow experience and consumer behavior. Journal of Retailing and Consumer Services, 37, 43-55.
    Fam, K. S., Foscht, T., & Collins, R. D. (2004). Trust and the online relationship—an exploratory study from New Zealand. Tourism Management, 25(2), 195-207.
    Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50.
    Foroughi, A., Buang, N. A., & Sadeghi, R. H. M. (2012). Exploring the influence of situational factors (money & time available) on impulse buying behaviour among different ethics. International Journal of Fundamental Psychology & Social Sciences (IJFPSS), 2(2), 41-44.
    Foster, A., & Ford, N. (2003). Serendipity and information seeking: an empirical study. Journal of Documentation, 59(3), 321-340.
    Gao, L., & Bai, X. (2014). Online consumer behaviour and its relationship to website atmospheric induced flow: Insights into online travel agencies in China. Journal of Retailing and Consumer Services, 21(4), 653-665.
    Gao, X., Xu, X.-Y., Tayyab, S. M. U., & Li, Q. (2021). How the live streaming commerce viewers process the persuasive message: An ELM perspective and the moderating effect of mindfulness. Electronic Commerce Research and Applications, 49, 101087.
    Geisser, S. (1974). A predictive approach to the random effect model. Biometrika, 61(1), 101-107.
    Geng, L., & Li, X. (2018). An empirical study on the relationship between consumption emotions and brand loyalty. Chinese Journal of Communication, 11(3), 267-288.
    Ghani, J. A., Supnick, R., & Rooney, P. (1991). The experience of flow in computermediated and in face-to-face groups, ICIS 1991 Proceedings. 9.
    Guo, L., Hu, X., Lu, J., & Ma, L. (2021). Effects of customer trust on engagement in live streaming commerce: mediating role of swift guanxi. Internet Research, 31(5), 1718-1744.
    Guo, Y., Zhang, K., & Wang, C. (2022). Way to success: understanding top streamer`s popularity and influence from the perspective of source characteristics. Journal of Retailing and Consumer Services, 64, 102786.
    Guo, Y. M., & Poole, M. S. (2009). Antecedents of flow in online shopping: a test of alternative models. Information Systems Journal, 19(4), 369-390.
    Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139-152.
    Hair Jr, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2021). A primer on partial least squares structural equation modeling (PLS-SEM). Sage publications.
    Hausman, A. V., & Siekpe, J. S. (2009). The effect of web interface features on consumer online purchase intentions. Journal of Business Research, 62(1), 5-13.
    Hayes, A. F. (2009). Beyond Baron and Kenny: Statistical mediation analysis in the new millennium. Communication Monographs, 76(4), 408-420.
    Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43, 115-135.
    Henseler, J., Ringle, C. M., & Sarstedt, M. (2016). Testing measurement invariance of composites using partial least squares. International Marketing Review, 33(3), 405-431.
    Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). The use of partial least squares path modeling in international marketing. In New challenges to international marketing. Emerald Group Publishing Limited.
    Hoffmann, D. L., & Novak, T. P. (1996). Marketing in hypermedia computer-mediated environments: conceptual foundations. Journal of Marketing, 60(3), 50-68.
    Hou, F., Guan, Z., Li, B., & Chong, A. Y. L. (2019). Factors influencing people’s continuous watching intention and consumption intention in live streaming: Evidence from China. Internet Research, 30(1), 141-163.
    Hsu, C.-L., Chang, K.-C., & Chen, M.-C. (2012). The impact of website quality on customer satisfaction and purchase intention: perceived playfulness and perceived flow as mediators. Information Systems and e-Business Management, 10(4), 549-570.
    Hu, M., & Chaudhry, S. S. (2020). Enhancing consumer engagement in e-commerce live streaming via relational bonds. Internet Research, 30(3), 1019-1041.
    Hu, X., Chen, X., & Davison, R. M. (2019). Social support, source credibility, social influence, and impulsive purchase behavior in social commerce. International Journal of Electronic Commerce, 23(3), 297-327.
    Huang, Y.-M., & Lin, P. H. (2017). Evaluating students’ learning achievement and flow experience with tablet PCs based on AR and tangible technology in u-learning. Library Hi Tech, 35(4), 602-614.
    Iyer, G. R., Blut, M., Xiao, S. H., & Grewal, D. (2020). Impulse buying: a meta-analytic review. Journal of the Academy of Marketing Science, 48(3), 384-404.
    Johnson, D., & Grayson, K. (2005). Cognitive and affective trust in service relationships. Journal of Business Research, 58(4), 500-507.
    Kang, K., Lu, J., Guo, L., & Li, W. (2021). The dynamic effect of interactivity on customer engagement behavior through tie strength: Evidence from live streaming commerce platforms. International Journal of Information Management, 56, 102251.
    Kim, Y. J., & Han, J. (2014). Why smartphone advertising attracts customers: A model of Web advertising, flow, and personalization. Computers in Human Behavior, 33, 256-269.
    Kline, R. B. (2011). Principles and practice of structural equation modeling (3. Baskı). New York, NY: Guilford, 14, 1497-1513.
    Ko, H.-C., & Chen, Z.-Y. (2020). Exploring the factors driving live streaming shopping intention: a perspective of parasocial interaction. Proceedings of the 2020 International Conference on Management of e-Commerce and e-Government, 36-40.
    Kock, N. (2015). Common method bias in PLS-SEM: A full collinearity assessment approach. International Journal of e-Collaboration (ijec), 11(4), 1-10.
    Kock, N., & Lynn, G. (2012). Lateral collinearity and misleading results in variancebased SEM: An illustration and recommendations. Journal of the Association for Information Systems, 13(7).
    Korzaan, M. L. (2003). Going with the flow: Predicting online purchase intentions. Journal of Computer Information Systems, 43(4), 25-31.
    Koufaris, M. (2002). Applying the technology acceptance model and flow theory to online consumer behavior. Information Systems Research, 13(2), 205-223.
    Lee, C.-H., & Chen, C.-W. (2021). Impulse buying behaviors in live streaming commerce based on the stimulus-organism-response framework. Information, 12(6), 241.
    Lee, M. T., & Theokary, C. (2021). The superstar social media influencer: Exploiting linguistic style and emotional contagion over content? Journal of Business Research, 132, 860-871.
    Li, M., Wang, Q., & Cao, Y. (2022). Understanding Consumer Online Impulse Buying in Live Streaming E-Commerce: A Stimulus-Organism-Response Framework. International Journal of Environmental Research and Public Health, 19(7), 4378.
    Li, Y., Li, X., & Cai, J. (2021). How attachment affects user stickiness on live streaming platforms: A socio-technical approach perspective. Journal of Retailing and Consumer Services, 60, 102478.
    Li, Y., & Peng, Y. (2021). What drives gift-giving intention in live streaming? The perspectives of emotional attachment and flow experience. International Journal of Human–Computer Interaction, 37(14), 1317-1329.
    Liao, J., Chen, K., Qi, J., Li, J., & Yu, I. Y. (2023). Creating immersive and parasocial live shopping experience for viewers: the role of streamers` interactional communication style. Journal of Research in Interactive Marketing, 17(1), 140-155.
    Lin, Y., Yao, D., & Chen, X. (2021). Happiness begets money: Emotion and engagement in live streaming. Journal of Marketing Research, 58(3), 417-438.
    Lina, L. F., & Ahluwalia, L. (2021). Customers’ impulse buying in social commerce: The role of flow experience in personalized advertising. Jurnal Manajemen Maranatha, 21(1), 1-8.
    Liu, H., Chu, H., Huang, Q., & Chen, X. (2016). Enhancing the flow experience of consumers in China through interpersonal interaction in social commerce. Computers in Human Behavior, 58, 306-314.
    Liu, H.-J., & Shiue, Y.-C. (2014). Influence of Facebook game players` behavior on flow and purchase intention. Social Behavior and Personality: an international journal, 42(1), 125-133.
    Liu, X., Zhang, L., & Chen, Q. (2022). The effects of tourism e-commerce live streaming features on consumer purchase intention: The mediating roles of flow experience and trust. Frontiers in Psychology, 13, 995129.
    Liu, Y., Li, H., & Hu, F. (2013). Website attributes in urging online impulse purchase: An empirical investigation on consumer perceptions. Decision Support Systems, 55(3), 829-837.
    Lu, H.-P., & Cheng, Y.-H. (2020). Sustainability in online video hosting services: the effects of serendipity and flow experience on prolonged usage time. Sustainability, 12(3), 1271.
    Lu, S., Yao, D., Chen, X., & Grewal, R. (2021). Do larger audiences generate greater revenues under pay what you want? evidence from a live streaming platform. Marketing Science, 40(5), 964-984.
    Lu, Y., Zhao, L., & Wang, B. (2010). From virtual community members to C2C ecommerce buyers: Trust in virtual communities and its effect on consumers’ purchase intention. Electronic Commerce Research and Applications, 9(4), 346-360.
    Lv, X., Zhang, R., Su, Y., & Yang, Y. (2022). Exploring how live streaming affects immediate buying behavior and continuous watching intention: A multigroup analysis. Journal of Travel & Tourism Marketing, 39(1), 109-135.
    Ma, L., Gao, S., & Zhang, X. (2022). How to Use Live Streaming to Improve Consumer Purchase Intentions: Evidence from China. Sustainability, 14(2), 1045.
    Mao, Z., Du, Z., Yuan, R., & Miao, Q. (2022). Short-term or long-term cooperation between retailer and MCN? New launched products sales strategies in live streaming e-commerce. Journal of Retailing and Consumer Services, 67, 102996.
    Martins, J., Costa, C., Oliveira, T., Gonçalves, R., & Branco, F. (2019). How smartphone advertising influences consumers` purchase intention. Journal of Business Research, 94, 378-387.
    Mehrabian, A., & Russell, J. A. (1974). An approach to environmental psychology. The MIT Press.
    Memon, M. A., Jun, H. C., Ting, H., & Francis, C. W. (2018). Mediation analysis issues and recommendations. Journal of Applied Structural Equation Modeling, 2(1), i-ix.
    Meng, L. M., Duan, S., Zhao, Y., Lü, K., & Chen, S. (2021). The impact of online celebrity in livestreaming E-commerce on purchase intention from the perspective of emotional contagion. Journal of Retailing and Consumer Services, 63, 102733.
    Ming, J., Jianqiu, Z., Bilal, M., Akram, U., & Fan, M. (2021). How social presence influences impulse buying behavior in live streaming commerce? The role of SOR theory. International Journal of Web Information Systems, 17(4), 300-320.
    Moorthy, V., Kiran, P., Banerjee, J., & SV, K. K. (2022). Investigating the Impact of Emotional Contagion on Customer Attitude, Trust and Brand Engagement: A Social Commerce Perspective. International Journal of Electronic Commerce Studies, 13(3), 99-118.
    Nunnally, J. C. (1978). An overview of psychological measurement. Clinical diagnosis of mental disorders: A handbook, 97-146.
    Parboteeah, D. V., Valacich, J. S., & Wells, J. D. (2009). The influence of website characteristics on a consumer`s urge to buy impulsively. Information Systems Research, 20(1), 60-78.
    Park, H. J., & Lin, L. M. (2020). The effects of match-ups on the consumer attitudes toward internet celebrities and their live streaming contents in the context of product endorsement. Journal of Retailing and Consumer Services, 52, 101934.
    Pham, M. T., Geuens, M., & De Pelsmacker, P. (2013). The influence of ad-evoked feelings on brand evaluations: Empirical generalizations from consumer responses to more than 1000 TV commercials. International Journal of Research in Marketing, 30(4), 383-394.
    Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: a critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879.
    Porter, C. E., & Donthu, N. (2008). Cultivating trust and harvesting value in virtual communities. Management Science, 54(1), 113-128.
    Pugh, S. D. (2001). Service with a smile: Emotional contagion in the service encounter. Academy of Management Journal, 44(5), 1018-1027.
    Qalati, S. A., Vela, E. G., Li, W., Dakhan, S. A., Hong Thuy, T. T., & Merani, S. H. (2021). Effects of perceived service quality, website quality, and reputation on purchase intention: The mediating and moderating roles of trust and perceived risk in online shopping. Cogent Business & Management, 8(1), 1869363.
    Robert, D., & John, R. (1982). Store atmosphere: an environmental psychology approach. Journal of Retailing, 58(1), 34-57.
    Rook, D. W. (1987). The buying impulse. Journal of Consumer Research, 14(2), 189-199.
    Rook, D. W., & Fisher, R. J. (1995). Normative influences on impulsive buying behavior. Journal of Consumer Research, 22(3), 305-313.
    Rungruangjit, W. (2022). What drives Taobao live streaming commerce? The role of parasocial relationships, congruence and source credibility in Chinese consumers’ purchase intentions. Heliyon, 8(6), e09676.
    Saleh, M. A. H. (2012). An investigation of the relationship between unplanned buying and post-purchase regret. International Journal of Marketing Studies, 4(4), 106.
    Shamim, K., & Islam, T. (2022). Digital influencer marketing: How message credibility and media credibility affect trust and impulsive buying. Journal of Global Scholars of Marketing Science, 32(4), 601-626.
    Skadberg, Y. X., & Kimmel, J. R. (2004). Visitors’ flow experience while browsing a Web site: its measurement, contributing factors and consequences. Computers in Human Behavior, 20(3), 403-422.
    Small, D. A., & Verrochi, N. M. (2009). The face of need: Facial emotion expression on charity advertisements. Journal of Marketing Research, 46(6), 777-787.
    Smink, A. R., Frowijn, S., van Reijmersdal, E. A., van Noort, G., & Neijens, P. C. (2019). Try online before you buy: How does shopping with augmented reality affect brand responses and personal data disclosure. Electronic Commerce Research and Applications, 35, 100854.
    Soderlund, M., Oikarinen, E.-L., & Tan, T. M. (2021). The happy virtual agent and its impact on the human customer in the service encounter. Journal of Retailing and Consumer Services, 59, 102401.
    Sohn, H.-K., & Lee, T. J. (2017). Tourists’ impulse buying behavior at duty-free shops: The moderating effects of time pressure and shopping involvement. Journal of Travel & Tourism Marketing, 34(3), 341-356.
    Stern, H. (1962). The significance of impulse buying today. Journal of Marketing, 26(2), 59-62.
    Su, X. (2019). An empirical study on the influencing factors of E-commerce live streaming. Proceddings of 2019 International Conference on Economic Management and Model Engineering (ICEMME), 492-496.
    Su, Y.-S., Chiang, W.-L., Lee, C.-T. J., & Chang, H.-C. (2016). The effect of flow experience on player loyalty in mobile game application. Computers in Human Behavior, 63, 240-248.
    Sun, Y., Shao, X., Li, X., Guo, Y., & Nie, K. (2019). How live streaming influences purchase intentions in social commerce: An IT affordance perspective. Electronic Commerce Research and Applications, 37, 100886.
    Tehseen, S., Ramayah, T., & Sajilan, S. (2017). Testing and controlling for common method variance: A review of available methods. Journal of Management Sciences, 4(2), 142-168.
    Tong, J. (2017). A study on the effect of web live broadcast on consumers’ willingness to purchase. Open Journal of Business and Management, 5(2), 280-289.
    Tonkin, E., Wilson, A. M., Coveney, J., Meyer, S. B., Henderson, J., McCullum, D., Webb, T., & Ward, P. R. (2019). Consumers respond to a model for (re) building consumer trust in the food system. Food Control, 101, 112-120.
    Tsiros, M., & Mittal, V. (2000). Regret: A model of its antecedents and consequences in consumer decision making. Journal of Consumer Research, 26(4), 401-417.
    Van Noort, G., Voorveld, H. A., & Van Reijmersdal, E. A. (2012). Interactivity in brand web sites: cognitive, affective, and behavioral responses explained by consumers` online flow experience. Journal of Interactive Marketing, 26(4), 223-234.
    Wang, D., Luo, X. R., Hua, Y., & Benitez, J. (2022). Big arena, small potatoes: A mixed-methods investigation of atmospheric cues in live-streaming ecommerce. Decision Support Systems, 158, 113801.
    Wang, X., & Wu, D. (2019a). Understanding user engagement mechanisms on a live streaming platform. HCI in Business, Government and Organizations. Information Systems and Analytics: 6th International Conference, HCIBGO 2019, Held as Part of the 21st HCI International Conference, HCII 2019, Orlando, FL, USA, July 26-31, 2019, Proceedings, Part II 21,
    Wang, X., & Wu, D. (2019b). Understanding user engagement mechanisms on a live streaming platform. international conference on human-computer interaction.
    Wongkitrungrueng, A., & Assarut, N. (2020). The role of live streaming in building consumer trust and engagement with social commerce sellers. Journal of Business Research, 117, 543-556.
    Wongkitrungrueng, A., Dehouche, N., & Assarut, N. (2020). Live streaming commerce from the sellers’ perspective: implications for online relationship marketing. Journal of Marketing Management, 36(5-6), 488-518.
    Wu, J.-J., & Chang, Y.-S. (2006). Effect of transaction trust on e-commerce relationships between travel agencies. Tourism Management, 27(6), 1253-1261.
    Wu, L., Chen, K.-W., & Chiu, M.-L. (2016). Defining key drivers of online impulse purchasing: A perspective of both impulse shoppers and system users. International Journal of Information Management, 36(3), 284-296.
    Wu, R., Wang, G., & Yan, L. (2019). The effects of online store informativeness and entertainment on consumers’ approach behaviors: Empirical evidence from China. Asia Pacific Journal of Marketing and Logistics, 32(6), 1327-1342.
    Xie, Y., Du, K., & Gao, P. (2022). The influence of the interaction between platform types and consumer types on the purchase intention of live streaming. Frontiers in Psychology, 7475.
    Xu, X., Wu, J.-H., & Li, Q. (2020). What drives consumer shopping behavior in live streaming commerce? Journal of Electronic Commerce Research, 21(3), 144-167.
    Yang, J., & Cao, C. (2022). Factors Influencing the Consumer Impulse Buying Behaviour: A Study in the Context of E-Commerce Live Broadcast, PACIS 2022 Proceedings. 252.
    Yim, M. Y.-C., Chu, S.-C., & Sauer, P. L. (2017). Is augmented reality technology an effective tool for e-commerce? An interactivity and vividness perspective. Journal of Interactive Marketing, 39(1), 89-103.
    Zhang, K., & Hung, K. (2020). The effect of natural celebrity–brand association and para-social interaction in advertising endorsement for sustainable marketing. Sustainability, 12(15), 6215.
    Zhang, L., Shao, Z., Li, X., & Feng, Y. (2021). Gamification and online impulse buying: The moderating effect of gender and age. International Journal of Information Management, 61, 102267.
    Zhang, M., Liu, Y., Wang, Y., & Zhao, L. (2022). How to retain customers: Understanding the role of trust in live streaming commerce with a sociotechnical perspective. Computers in Human Behavior, 127, 107052.
    Zhao, J.-D., Huang, J.-S., & Su, S. (2019). The effects of trust on consumers’ continuous purchase intentions in C2C social commerce: A trust transfer perspective. Journal of Retailing and Consumer Services, 50, 42-49.
    Zheng, S., Chen, J., Liao, J., & Hu, H.-L. (2023). What motivates users` viewing and purchasing behavior motivations in live streaming: A stream-streamer-viewer perspective. Journal of Retailing and Consumer Services, 72, 103240.
    Zhou, R., & Tong, L. (2022). A Study on the Influencing Factors of Consumers` Purchase Intention During Livestreaming e-Commerce: The Mediating Effect of Emotion. Frontiers in Psychology, 13, 903023.
    iiMedia (2022),2022-2023 年中國直播電商行業運行大數據分析及趨勢研究報告,上網日期 2022 年 8 月 1 日,取自:https://www.iimedia.cn/c400/86233.html
    MIC 資策會產業情報研究所(2021),【社群與通訊消費者調查系列三】超過七成網友曾觀看過商品直播 FB 與 YouTube 為最大宗 金融理財需求崛起 直播促成下單成效逐漸浮現,上網日期 2023 年 4 月 30 日,取自:https://mic.iii.org.tw/news.aspx?id=613
    Money101(2022),2022 消費者網購支付行為調查,上網日期 2023 年 5 月 19 日,取自:https://money101.events/content/202209sv-268
    中國消費者協會(2020),《直播電商購物消費者滿意度在線調查報告》,上網日期 2022 年 7 月 26 日,取自:https://www.manyibar.com/news/report-01
    描述: 碩士
    國立政治大學
    資訊管理學系
    109356041
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0109356041
    数据类型: thesis
    显示于类别:[資訊管理學系] 學位論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    604101.pdf2590KbAdobe PDF20检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈