English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52587897      Online Users : 770
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/143881


    Title: 以技術指標建構投資策略之實證研究—以台灣個股為例
    Empirical Study on Constructing Investment Strategies based on Technical Indicators – Taking Stocks in Taiwan for Example
    Authors: 楊尚儒
    Yang, Shang-Ju
    Contributors: 黃泓智
    Huang, Hong-Zhi
    楊尚儒
    Yang, Shang-Ju
    Keywords: 技術指標結合
    個股股價回測
    績效分析
    Combination of technical indicators
    Backtesting of Stock price
    Performance analysis
    MA
    KD
    RSI
    MACD
    Date: 2023
    Issue Date: 2023-03-09 18:49:08 (UTC+8)
    Abstract: 本研究欲將常見的技術指標,如:移動平均線(MA)、隨機指標(KD)、相對強弱指標(RSI)、平滑異同移動平均線指標(MACD)等等,兩兩結合使用,並針對表現相對優異的MACD以及RSI技術指標做調整,以期較技術指標單獨使用時更佳的投資報酬,藉由個股股價回測以及績效分析,尋找相對適合台灣股市投資的技術指標方法。實證結果顯示,部分技術指標兩兩結合使用就可以帶來較單一技術指標更高的報酬,而針對個股RSI指數做簡單平均平滑、指數平均平滑或是進出場門檻的調整,再與其他技術指標結合使用,可以進一步提升投資績效,唯需注意部分技術指標方法存在投資標的之流動性風險,以及在空頭市場中表現欠佳的問題。
    The purpose of this study is trying to combine common technical indicators, such as: Moving Average (MA), Stochastic Oscillator (KD), Relative Strength Index (RSI), Moving Average Convergence Divergence (MACD), etc. Indicators are combined or adjusted in order to achieve better investment returns than they were used alone. Stock price backtesting and performance analysis of individual stocks are conducting to find technical indicators that are relatively suitable for Taiwan stock market investment. The empirical results show that the combination of two technical indicators can bring higher returns than a single technical indicator, and smoothing RSI or adjusting the entry and exit thresholds can further improve performance. However, it is necessary to pay attention to the liquidity risk of investment targets in some technical indicator methods and the problem of poor performance in the bear market.
    Reference: 1. 福永博之。最強技術指標組合:日本人氣分析師親授1+1>2的賺錢術。2019年7月。
    2. Appel, G.(1979). The Moving Average Convergence Divergence Method, Signalert.
    3. Kang, B.K. (2021). Improving MACD Technical Analysis by Optimizing Parameters and Modifying Trading Rules: Evidence from the Japanese Nikkei 225 Futures Market. Journal of Risk and Financial Management 14, 37.
    4. Fama, E.F. & Blume, M. (1966). Filter Rules and Stock Market Trading Profits. Journal of Business 39, Special Supplement, 226-241.
    5. Froot, K.A., Scharfstein, D.S. & Stein, J.C. (1992). Heard on the street : information inefficiencies in a market with short-term speculators. Journal of Finance 47, 1461-1484.
    6. Chan, P.M. (2018). Dynamically Adjustable Moving Average (AMA’) technical analysis indicator to forecast Asian Tigers’ futures markets. Physica A 509, 336-345.
    7. Jensen, M.C. & Benington, G.A. (1970). Random Walks and Technical Theories: Some Additional Evidence. Journal of Finance, 469-482.
    8. Murphy, J.J. (1999). Technical Analysis of the Financial Markets. New York Institute of Finance, 1-5, 24-31.
    9. Borowski, K. & Izabela, P.G. (2019). Optimal lengths of moving averages for the MACD oscillator for companies listed on the Warsaw Stock Exchange. Bank i Kredyt 50(5), 457-478.
    10. Menkhoff, L. (2010). The use of technical analysis by fund managers: International evidence. Journal of Banking & Finance 34, 2573–2586.
    11. Wong, W. K., Manzur, M. & Chew, B.K. (2003). How rewarding is technical analysis? Evidence from Singapore stock market. Applied Financial Economics, 13(7), 543–551.
    12. Nison, S. (1994). Beyond Candlesticks: New Japanese Charting Techniques Revealed, John Wiley and Sons.
    13. Gold, S. (2015). The Viability of Six Popular Technical Analysis Trading Rules in Determining Effective Buy and Sell Signals: MACD, AROON, RSI, SO, OBV, and ADL. Journal of Applied Financial Research, Gulfport Vol.2:8-29.
    Description: 碩士
    國立政治大學
    風險管理與保險學系
    109358026
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0109358026
    Data Type: thesis
    Appears in Collections:[風險管理與保險學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    802601.pdf1839KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback