政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/143783
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113730/144729 (79%)
造訪人次 : 51765216      線上人數 : 538
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/143783


    題名: 探討社群媒體對抗式攻擊與防禦對股市交易影響:以Twitter情感分析為範例
    Exploring Social Media Adversarial Attack and Defense on Stock Trading Effect: Twitter Sentiment Analysis as an Example
    作者: 溫永靖
    Wen, Yung-Ching
    貢獻者: 胡毓忠
    Hu, Yuh-Jong
    溫永靖
    Wen, Yung-Ching
    關鍵詞: 情感分析
    深度學習
    社群媒體
    對抗式攻擊
    對抗式防禦
    Sentiment analysis
    Deep learning
    Social media
    Adversarial attack
    Adversarial defense
    日期: 2023
    上傳時間: 2023-03-09 18:25:40 (UTC+8)
    摘要: 近年來文字對抗式攻擊廣泛研究,在文字上進行微幅的調整,即會讓機器學習模型辨識錯誤。本文將模擬股票程式交易的情境,探討程式交易模型使用基於BERT模型的FinBERT受到文字對抗式攻擊影響情感辨識時,交易策略的變化,並探討如何因應文字對抗式攻擊。實驗結果發現:(1)使用Twitter討論SPY ETF貼文輔助價格預測,並執行布林通道交易策略,模擬日中交易進行回測,可獲得報酬率20.25%(2)當Twitter貼文受到攻擊者文字對抗式攻擊時,降低情感分析準確率整體下降24.1%與報酬率2.09%。(3)當Twitter受到文字對抗式攻擊時,使用Spark-NLP模型進行對抗式防禦,情感分析準確率會回升1.1%,但對於報酬率回復無影響。
    The adversarial attack on the text has been extensively studied in recent years. A little perturbed on the text will let the machine model classify errors. This paper simulates the scenario of the stock program trading, exploring when the program trading model based on the BERT model`s FinBERT was attacked against adversarial attack on the text and was affected the sentiment analysis, the change of trading strategy, and exploring how to solve adversarial attack on text. The experimental results found that(1)We use the Twitter posts which discuss SPY ETF to assist price forecasting and execute Bollinger Band trading strategies, simulate intraday-trading, it can get a 20.25% return rate (2) When Twitter posts were attacked by an adversarial attack, it will reduce sentiment analysis accurate rate 24.1% and return rate will reduce 2.09% (3)When Twitter posts were attacked by an adversarial attack, we use Spark-NLP model can recover sentiment analysis accurate rate 1.1% but no effect on transaction results.
    參考文獻: [1] C. Gu and A. Kurov, “Informational role of social media: Evidence from twitter
    sentiment,” Journal of Banking & Finance, vol. 121, 2020.
    [2] G. Ranco, D. Aleksovski, G. Caldarelli, M. Grčar, and I. Mozetič, “The effects of
    twitter sentiment on stock price returns,” PloS one, vol. 10, no. 9, 2015.
    [3] D. F. Araci and Z. Genc, “Financial sentiment analysis with pre-trained language
    models,” arXiv preprint arXiv:1908.10063, 2019.
    [4] P. Malo, A. Sinha, P. Korhonen, J. Wallenius, and P. Takala, “Good debt or bad debt:
    Detecting semantic orientations in economic texts,” Journal of the Association for
    Information Science and Technology, vol. 65, no. 4, pp. 782–796, 2014.
    [5] Y. Hao, L. Dong, F. Wei, and K. Xu, “Visualizing and understanding the effectiveness
    of bert,” arXiv preprint arXiv:1908.05620, 2019.
    [6] H. Altin, “Efficient market hypothesis, abnormal return and election periods,” Eu-
    ropean Scientific Journal, vol. 11, no. 34, 2015.
    [7] S. Mehdian and M. J. Perry, “Anomalies in us equity markets: A re-examination of
    the january effect,” Applied Financial Economics, vol. 12, no. 2, pp. 141–145, 2002.
    [8] A. Mittal and A. Goel, “Stock prediction using twitter sentiment analysis,” Stand-
    ford University, CS229 (2011 http://cs229. stanford. edu/proj2011/GoelMittal-
    StockMarketPredictionUsingTwitterSentimentAnalysis. pdf), vol. 15, 2012.
    [9] L. Nemes and A. Kiss, “Prediction of stock values changes using sentiment analysis
    of stock news headlines,” Journal of Information and Telecommunication, vol. 5,
    no. 3, pp. 375–394, 2021.
    [10] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
    of deep bidirectional transformers for language understanding,” arXiv preprint
    arXiv:1810.04805, 2018.
    [11] Y. Zhou, J.-Y. Jiang, K.-W. Chang, and W. Wang, “Learning to discriminate per-
    turbations for blocking adversarial attacks in text classification,” arXiv preprint
    arXiv:1909.03084, 2019.
    [12] I. Alsmadi, K. Ahmad, M. Nazzal, F. Alam, A. Al-Fuqaha, A. Khreishah, and A. Al-
    gosaibi, “Adversarial attacks and defenses for social network text processing ap-
    plications: Techniques, challenges and future research directions,” arXiv preprint
    arXiv:2110.13980, 2021.
    [13] J. Morris, E. Lifland, J. Y. Yoo, J. Grigsby, D. Jin, and Y. Qi, “Textattack: A frame-
    work for adversarial attacks, data augmentation, and adversarial training in nlp,” pp.
    119–126, 2020.
    [14] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial
    examples,” arXiv preprint arXiv:1412.6572, 2014.
    [15] V. Kocaman and D. Talby, “Spark nlp: natural language understanding at scale,”
    Software Impacts, vol. 8, 2021.
    [16] Andreotti, “Applying context aware spell check-
    ing in spark nlp,” 2020, https://medium.com/spark-nlp/
    applying-context-aware-spell-checking-in-spark-nlp-3c29c46963bc, Online;Last
    accessed on 2022-12-31.
    [17] Olah, “Understanding lstm networks,” 2015, http://colah.github.io/posts/
    2015-08-Understanding-LSTMs/, Online;Last accessed on 2022-12-31.
    [18] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,
    vol. 9, no. 8, pp. 1735–1780, 1997.
    [19] T. Fischer and C. Krauss, “Deep learning with long short-term memory networks for
    financial market predictions,” European journal of operational research, vol. 270,
    no. 2, pp. 654–669, 2018.
    [20] G. Deza, C. Rowat, and N. Papernot, “On the robustness of sentiment analysis for
    stock price forecasting,” ICLR 2021 Conference Program Chairs, 2020.
    [21] M. Roondiwala, H. Patel, and S. Varma, “Predicting stock prices using lstm,” In-
    ternational Journal of Science and Research (IJSR), vol. 6, no. 4, pp. 1754–1756,
    2017.
    [22] C. W. Granger, “Investigating causal relations by econometric models and cross-
    spectral methods,” Econometrica: journal of the Econometric Society, pp. 424–438,
    1969.
    [23] J. Bollinger, Bollinger on Bollinger bands. McGraw-Hill New York, 2002.
    [24] E. Nehemya, Y. Mathov, A. Shabtai, and Y. Elovici, “Taking over the stock market:
    Adversarial perturbations against algorithmic traders,” pp. 221–236, 2021.
    描述: 碩士
    國立政治大學
    資訊科學系碩士在職專班
    109971016
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0109971016
    資料類型: thesis
    顯示於類別:[資訊科學系碩士在職專班] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    101601.pdf5392KbAdobe PDF20檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋