English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113974/145000 (79%)
Visitors : 52012830      Online Users : 534
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/143773


    Title: 運用深度強化學習建立虛擬貨幣投資組合
    Establish The Portfolio of Crypto Currency by Applying Deep-Reinforcement Learning
    Authors: 蘇育正
    Su, Yu-Cheng
    Contributors: 蔡炎龍
    蕭明福

    Thai, YenLung
    Shaw, MingFu

    蘇育正
    Su, Yu-Cheng
    Keywords: 深度學習
    強化學習
    深度強化學習
    虛擬貨幣
    投資組合
    Reinforcement Learning
    Portfolio
    Crypto
    Date: 2022
    Issue Date: 2023-03-09 18:23:05 (UTC+8)
    Abstract: 本研究運用深度強化學習建立虛擬貨幣的投資組合,研究標的主要以 2021
    年 12 月 31 日市值排名前 50 大的虛擬貨幣。研究期間從 2017 年 1 月 3 日至2021 年 12 月 31 日,並主要以五個因子(Factor):開盤價(Open)、最高價(High)、最低價(Low)、收盤價(Close)、成交量(Volume)為輸入資料(Input),並在一開始先以(1)市值、(2)平均振幅抓取 30 檔虛擬幣組建投資組合,輸入給深度強化學習模型進行訓練,最終發現相較於其他種因子建立的投資組合,平均振幅打造的投資組合表現更好,也比單一持續持有比特幣來的更合適。
    Reference: [1] Fan Fang, Carmine Ventre, Michail Basios, Leslie Kanthan, DavidMartinez-Rego, Fan Wu and Lingbo Li. Cryptocurrency trading: a comprehensive survey. Finanical Innovation,8(13),2022.
    [2] Timothy King and Dimitrios Koutmos. Herding and feedback trading in cryptocurrency markets. Annals of Operations Research,300:79-97,2021.
    [3] WeiSun, Alisher Tohirovich, Dedahanov, Ho YoungShin and Wei PingLi. Factors affecting institutional investors to add cryptocurrency to asset portfolios. The North American Journal of Economics and Finance,volume 58,2021.
    [4] Paraskevi Katsiampa, Larisa Yarovaya and DamianZięba. Highfrequency connectedness between Bitcoin and other top-traded crypto assets during the COVID-19 crisis. Journal of International Financial Markets, Institutions and Money,volume 79,2022.
    [5] Andrés Arévalo, Jaime Niño, G. Hernández and Javier Sandoval. High-Frequency Trading Strategy Based on Deep Neural Networks.International Conference on intelligent Computing, LNAI,volume 9773,2016.
    [6] Maria Čuljak,BojanTomić and SašaŽiković . Benefits of sectoral cryptocurrency portfolio optimization. Research in International Business and Finance,volume 60,2022.
    [7] Golnoosh Babaei,Paolo Giudici and EmanuelaRaffinetti. Explainable artificial intelligence for crypto asset allocation. Finance Research Letters,volume 47,Part B,2022.
    [8] Leonardo Kanashiro Felizardo,Francisco CaioLima Paiva,Catharinede Vita Graves,Elia Yathie Matsumoto,Anna Helena Reali Costa,Emilio DelMoral-Hernandez and Paolo Brandimarte. Outperforming algorithmic trading reinforcement learning systems: A supervised approach to the 30
    cryptocurrency market. Expert Systems with Applications,volume 202,2022.
    [10] Hongfeng Xu,Lei Chai,Zhiming Luo and Shaozi Li. Stock movement prediction via gated recurrent unit network based on reinforcement learning with incorporated attention mechanisms. Neurocomputing,volume 467,Pages 214-228,2022.
    [11] Fengrui Liu,Yang Li,Baitong Li,Jiaxin Li and Huiyang Xie . Bitcoin transaction strategy construction based on deep reinforcement learning. Applied Soft Computing,volume113,Part B,2021.
    [12] Thibaut Théate and Damien Ernst . An application of deep reinforcement learning to algorithmic trading. Expert Systems with Applications,volume 173,2021.
    [13] Liguo Weng,Xudong Sun,Min Xia,Jia Liu and Yiqing Xu. Portfolio Trading System of Digital Currencies: A Deep Reinforcement Learning with Multidimensional Attention Gating Mechanism. Neurocomputing,volume 402,Pages 171-182,2019
    Description: 碩士
    國立政治大學
    經濟學系
    108258034
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0108258034
    Data Type: thesis
    Appears in Collections:[經濟學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    803401.pdf1563KbAdobe PDF241View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback