政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/143720
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 114105/145137 (79%)
造訪人次 : 52208681      線上人數 : 325
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/143720
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/143720


    題名: Crámer-Lundberg 風險模型及其擴散近似之最適再保險策略
    Optimal Proportional Reinsurance Strategies for Classical Crámer-Lundberg Risk Model and It’s Corresponding Diffusion Approximations
    作者: 潘柏樺
    Pan, Po-Hua
    貢獻者: 許順吉
    Sheu, Shuenn-Jyi
    潘柏樺
    Pan, Po-Hua
    關鍵詞: 部分再保險
    隨機控制
    隨機過程
    哈密頓-雅可比-貝爾曼方程式
    Proportional reinsurance
    Stochastic control
    Stochastic process
    HJB equation
    日期: 2023
    上傳時間: 2023-03-09 18:12:58 (UTC+8)
    摘要: 再保險是保險公司管理風險的有力工具。如果我們將保險公司隨時間變化的淨利潤建模為一個隨機過程,將再保險策略視為一個控制過程,那麼最小化這種隨機過程的破產機率就是一個隨機控制問題。本文旨在尋找最適再保險策略,使破產機率最小化。與許多其他隨機控制問題一樣,我們使用哈密頓-雅可比-貝爾曼方程來求解該問題。
    Reinsurance is a powerful tool for insurance company to manage the risk. If we model the net profit of insurance company over time as a stochastic process and view the reinsurance strategy as a control process, then to minimize the ruin probability of such stochastic process is a stochastic control problem. This article aims to find the optimal reinsurance strategy so that the ruin probability to be minimized. As many other stochastic control problem, we use the Hamilton-Jacobi-Bellman (HJB) equation to solve the problem.
    參考文獻: [1] Hanspeter Schmidli (2007): Stochastic Control in Insurance, 2007.
    [2] Hanspeter Schmidli (2017): Risk Theory, 2017.
    [3] Jan Grandell (1977): A class of approximations of ruin probabilities, Scandinavian
    Actuarial Journal, 1977:sup1, 37-52.
    [4] Donald L. Iglehart (1969): Diffusion Approximations in Collective Risk Theory, Journal
    of Applied Probability, 1969: 285-289.
    [5] Bernt Øksendal (2000): Stochastic Differential Equations, 2000.
    [6] Jean-François Le Gall (2016): Brownian motion, Martingales, and Stochastic Calculus,
    2016.
    [7] Jean Jacod, Philip Protter (2004): Probability Essential, 2004.
    描述: 碩士
    國立政治大學
    應用數學系
    109751008
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0109751008
    資料類型: thesis
    顯示於類別:[應用數學系] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    100801.pdf1315KbAdobe PDF2139檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋