政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/143719
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113648/144635 (79%)
造访人次 : 51633324      在线人数 : 545
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/143719


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/143719


    题名: 在Goldie-Coldman模型下野生型癌症細胞對癌症治療影響之探討
    An investigation on the Effect of Wild Type Cancer Cells to Cancer Treatment under Goldie-Coldman Model
    作者: 施銘威
    Shih, Ming-Wei
    贡献者: 陳政輝
    Chen, Jeng-Huei
    施銘威
    Shih, Ming-Wei
    关键词: 癌症
    抗藥性
    Goldie-Coleman模型
    Cancer
    Drug resistance
    Goldie and Coldman’s model
    日期: 2022
    上传时间: 2023-03-09 18:12:46 (UTC+8)
    摘要: 化療被用於治療多種癌症,在治療的過程中,因癌細胞突變產抗藥性,嚴重影響治療成效。為探討抗藥性對治療的影響,Goldie和Coldman在1979年提出了第一個癌症治療的抗藥性數學模型。Goldie和Coldman的模型考慮以兩種藥物治療含有野生型癌細胞及兩種分別對採用的其中一種藥物具抗藥性的突變癌細胞。治療的目標是如何在治療後使雙重抗藥性癌細胞產生的機率最低。Goldie和Coldman隨後與Guaduskas合作,分別以數值與解析方法證明,當兩種藥物效力與模型參數具對稱性時,交替使用兩種藥物療效最佳。Chen等學者推廣Goldie等人的工作,提出若兩種藥物對野生型癌細胞有相同效力時,最佳治療方式可以數學解析方式求得。

    本論文中,我們考慮兩種藥物對野生型癌細胞效力不同對最佳用藥策略的影響。根據我們對突變過程的觀察,野生型癌細胞個數相較於抗藥性細胞個數必須很大,才可能對最佳用藥策略造成影響,因此,我們猜想當野生型癌細胞數量不是太大時,Chen等學者所提產生用藥策略的方法,仍是最佳用藥策略。數值結果與我們猜想的預期相符合。此外,當野生型癌細胞個數相較於抗藥性細胞很大時,我們提出了兩種演算法來考慮野生型癌細胞影響,產生用藥策略。數值結果顯示此兩種演算法可改進Chen等學者提出之方法。藉由適當合併這些已提出的演算法,可以產生有潛力的近似型演算法來找到好的治療用藥策略。因此,如何以數學方法嚴謹的證明我們所提關於野生型癌細胞個數對用藥策略影響之猜想,將是重要的工作,也是未來繼續研究的方向。
    Chemotherapy is applied to treat many different cancers. However, due to mutation, drug resistance might occur and might seriously affect the efficacy of treatment. To study the effect of drug resistance, Goldie and Coldman proposed the first mathematical model of drug resistance in cancer treatment in 1979. In their model, two drugs are applied to treat cancers consisting of sensitive wild-type cancer cells and two mutant cancer cells without cross-resistance. The treatment goal is to minimize the risk of developing double resistant cancer cells after treatment. In cooperation with Guaduskas, Goldie and Coldman later demonstrated that, both numerically and analytically, if two drugs have symmetric potencies and the model possesses symmetric structure in its parameter setting, alternating usage of two drugs is the optimal treatment policy. In 2013, Chen et al. further showed that the optimal treatment policy can be obtained analytically under the assumption that two drugs have the same efficacy on wild-type cancer cells.

    In this thesis, we consider the optimal treatment policy when two drugs have different efficacies on wild-type cancer cells. Based on our observation to the mutation process, the number of wild-type cancer cells must be large compared to that of drugresistant cells in order to determine the optimal policy. We therefore conjecture that when the number of wild-type cancer cells is not too large, the optimal treatment policy can still be determined by Chen’s method. Numerical results are in line with the prediction of our conjecture. For the case that the number of wild-type cancer cells is sufficiently large compared to that of drug-resistant cells, we also propose two algorithms, which take the influence of wild-type cancer cells to treatment into account. Numerical results show that both algorithms have good performance. Through combining Chen’s and our proposed algorithms, it is of great potential to create approximate algorithms for finding good treatment policies. Therefore, how to rigorously prove our conjecture regarding the influence of the number of wild-type cancer cells is important and will be our future work.
    參考文獻: [1] K.Bao, An elementary mathematical modeling of drug resistance in cancer,
    Mathematical Biosciences and Engineering, vol.18, no.1, p.339-341, 2020.
    [2] V.T. Devita, Principles of chemotherapy, in: V.T. Devita, S. Hellman, S.A.
    Rosenberg, V. Devita (Eds.), Principles and Practice of Oncology, Lippincott,
    Philedelphia, PA, no.3, p.278, 1989.
    [3] A.J. Coldman, J.M. Murray, Optimal control for a stochastic model of cancer
    chemotherapy, Mathematical Biosciences, vol.168, 2000.
    [4] R.S. Day, Treatment sequencing, asymmetry, and uncertainty: protocol strategies for
    combination chemotherapy, Cancer Research, vol.46, p.3876-3885, 1986.
    [5] A.A. Katouli, N.L. Komarova, The worst drug rule revisited: mathematical
    modeling of cyclic cancer treatments, Bull. Math. Biol. , vol.73, p.549–584, 2011.
    [6] J.H. Goldie, A.J. Coldman, A mathematical model for relating the drug sensitivity of
    tumors to their spontaneous mutation rate, Cancer Treatment Reports, vol.63, no.11-
    12, p.1727-1733, 1979.
    [7] F.Michor, M.A. Nowak, Y. Iwasa, Evolution of resistance to cancer therapy,
    Current Pharmaceutical Design, vol.12, no.3, p.261–271, 2006.
    [8] M. Kimmel, A. Swierniak, A. Polanski, Infinite-dimensional model of evolution of
    drug resistance of cancer cells, Journal of Mathematical Systems, Estimation, and
    Control, vol.8, p.1–16, 1998.
    [9] N. Komarova, Stochastic modeling of drug resistance in cancer, Theoretical
    Population Biology, vol.239, no.3, p.351–366, 2006.
    [10] N.L. Komarova, D. Wodarz, Drug resistance in cancer: principle of emergence and
    prevention, Proceedings of the National Academy of Sciences USA, vol.102,
    p.9714-9719, 2005.
    [11] N.L. Komarova, Stochastic modeling of drug resistance in cancer, Journal of
    Theoretical Biology, vol.239, no.3, p.351-366, 2006.
    [12] E.C. de Bruin, T.B. Taylor, S C. wanton, Intra-tumor heterogeneity: lessons from
    microbial evolution and clinical implications, Genome Medicine, vol.5, p.1–11,
    2013.
    [13] M. Gerlinger, A.J. Rowan, S. Horswell, J. Larkin, D. Endesfelder, E. Gronroos, P.
    Martinez, Intratumor heterogeneity and branched evolution revealed by multiregion
    sequencing, The New England Journal of Medicine, vol.366, p.883–892, 2012.
    [14] J.H. Goldie, A.J. Coldman, G.A. Gudauskas, Rationale for the use of alternating
    non-cross-resistant chemotherapy, Cancer Treat. Rep. , vol.66, p.39, 1982.
    [15] A.J. Coldman, J.H. Goldie, A model for the resistance of tumor cells to cancer
    chemotherapeutic agents, Math. Biosci. , vol.65, p.291, 1983.
    [16] H.E. Skipper, Reasons for success and failure in treatment of murine leukemias with
    the drugs now employed in treating human leukemias, Cancer Chemotherapy,
    University Microfilms International, Ann Arbor, MI, vol.1, p.1-166, 1978.
    [17] H.E. Skipper, On reducing yreatment failures due to overgrowth of specifically and
    permanently drug resistant neoplastic cells, Cancer Chemotherapy, University
    Microfilms International, Ann Arbor, MI, vol.2, 1979.
    [18] R.W. Brockman, Circumvention of resistance, in the Pharmacological Basis of
    Cancer Chemotherapy, Baltimore, MD, The Williams and Wilkins Co, Ltd, pp 691-
    710, 1975.
    [19] F.M. Schabel, Jr, H.E. Skipper, M.W. Trader, et al, Concepts for controlling drugresistant tumor cells. In Breast Cancer — Experimental and Clinical Aspects
    (Mouridsen HT,and Palshof T, eds ), Oxford , England, Pergamon Press, pp 199-
    212, 1980.
    [20] J.H. Chen, Y.H. Kuo, H. Luh, Optimal policies of non-cross-resistant chemotherapy
    on Goldie and Coldman’s cancer model, Mathematical Biosciences, vol.245, p.282–
    298, 2013.
    [21] J. Ferlay, M. Ervik, F. Lam, M. Colombet, L. Mery, M. Piñeros, et al, Global cancer
    observatory: cancer today, International Agency for Research on Cancer, Lyon,
    2020.
    [22] 世界衛生組織https://www.who.int/en/news-room/fact-sheets/detail/cancer.
    [23] Defining cancer. National Cancer Institute. [2014-06-10].
    [24] H.N. Weerasinghe, P.M. Burrage, K. Burrage, D.V. Nicolau, Mathematical models
    of cancer cell plasticity, Journal of Oncology, 2019.
    [25] A. Yin, D.J.A.R. Moes, J.G.C.V. Hasselt, J.J. Swen, H.J. Guchelaar, A review of
    mathematical models for tumor dynamics and treatment resistance evolution of solid
    tumors, National Library of Medicine, vol.8, no.10, p.720-737, 2019.
    [26] P.M. Altrock, L.L. Liu, F. Michor, The mathematics of cancer: integrating
    quantitative models, Nature Reviews Cancer, vol.15, p.730–745, 2015.
    [27] Y. Watanabe, E.L. Dahlman, K.Z. Leder, S.K. Hui, A mathematical model of tumor growth and its response to single irradiation, Theoretical Biology and Medical
    Modelling, vol.13, no.6, 2016.
    [28] R. Brady, H. Enderling, Mathematical models of cancer: when to predict novel
    therapies, and when not to, Bulletin of Mathematical Biology, vol.81, p.3722-3731,
    2019.
    [29] D. Dingli, M.D. Cascino, K. Josić, S.J. Russell, Ž. Bajzer, Mathematical modeling
    of cancer radiovirotherapy, Mathematical Biosciences, vol.199, p.55-78, 2006.
    [30] K.M. Turner, S.K. Yeo, T.M. Holm, E. Shaughnessy, J.L. Guan, Heterogeneity
    within molecular subtypes of breast cancer, American Journal of Physiology-Cell
    Physiology, vol.321, no.2, 2021.
    [31] D. Mathur, E. Barnett, H.I. Scher, J.B. Xavier, Optimizing the future: how
    mathematical models inform treatment schedules for cancer, Trends in Cancer,
    vol.8, no.6, p.506-516, 2022.
    [32] C. Grassberger, D. McClatchy III, C. Geng, etc., Patient-specific tumor growth
    trajectories determine persistent and resistant cancer cell populations during
    treatment with targeted therapies, Cancer Research, vol.79, no.14, p.3776-3788,
    2019.
    [33] J.W.T. Yates, H. Mistry, Clone wars: quantitatively understanding cancer drug
    resistance, JCO Clinical Cancer Informatics, vol.4, p.938-946, 2020.
    [34] N. Carels, A.J. Conforte, C.R. Lima, etc., Challenges for the optimization of drug
    therapy in the treatment of cancer, Networks in Systems Biology, vol.32, p.163-198,
    2020.
    [35] J.Wijaya, T.Gose, J.D. Schuetz, etc., Using pharmacology to squeeze the life out of
    childhood leukemia, and potential strategies to achieve breakthroughs in
    medulloblastoma treatment, Pharmacological Reviews, vol.72, no.3, p.668-691,
    2020.
    [36] A. Major, S.M. Smith, DA-R-EPOCH vs R-CHOP in DLBCL: How do we choose?,
    Clinical Advances in Hematology & Oncology, vol.19, no.11, p.698-709, 2021.
    [37] N. Tokutomi, C. Moyret-Lalle, A. Puisieux, etc., Quantifying local malignant
    adaptation in tissue-specific evolutionary trajectories by harnessing cancer’s
    repeatability at the genetic level, Evolutionary Applications, vol.12, no.5, p.1062-
    1075, 2019.
    [38] TaLa, W. Sun, X. Zhao, J. Zhang , etc., A mathematical model to study the effect of drug kinetics on the drug-induced resistance in tumor growth dynamics, IOP
    Conference Series: Earth and Environmental Science, vol.332, no.3, 2019.
    [39] X. Wang, H. Zhang, X. Chen, Drug resistance and combating drug resistance in
    cancer, Cancer Drug Resist., vol.2, no.1, p.141-160, 2019.
    [40] N. Vasan, J. Baselga , D.M. Hyman, A view on drug resistance in cancer, Nature,
    vol.575, p.299-309, 2019.
    [41] W. Löscher, H. Potschka, S.M. Sisodiya, etc., Drug resistance in epilepsy: clinical
    impact, Potential Mechanisms, and New Innovative Treatment Options, vol.72,
    no.3, p.606-638, 2020.
    [42] J. Berman, D.J. Krysan, Drug resistance and tolerance in fungi, Nature Reviews
    Microbiology, vol.11, no.18, p.319-331, 2020.
    [43] Y. Yao, Y. Zhou, L. Liu, etc., Nanoparticle-based drug delivery in cancer therapy
    and its role in overcoming drug resistance, Frontiers in Molecular Biosciences,
    vol.20, 2020.
    [44] Y. Lee, E. Puumala, N. Robbins, etc., Antifungal drug resistance: molecular
    mechanisms in candida albicans and beyond, vol.121, no.6, p.3390-3411, 2021.
    [45] W. Si, J. Shen, H. Zheng, etc., The role and mechanisms of action of microRNAs in
    cancer drug resistance, Clinical Epigenetics, vol.11, no.25, 2019.
    [46] S. Lee, J. Rauch 1, W. Kolch, Targeting MAPK signaling in cancer: mechanisms of
    drug resistance and sensitivity, Int. J. Mol. Sci., vol.21, no.3, 2020.
    [47] Z.F. Lim, P.C. Ma, Emerging insights of tumor heterogeneity and drug resistance
    mechanisms in lung cancer targeted therapy, Journal of Hematology & Oncology,
    vol.12, no.134, 2019.
    [48] L. Wei, J. Sun, N. Zhang, etc., Noncoding RNAs in gastric cancer: implications for
    drug resistance, Molecular Cancer, vol.19, no.62, 2020.
    [49] L. Mashouri, H. Yousefi, A.R. Aref, Exosomes: composition, biogenesis, and
    mechanisms in cancer metastasis and drug resistance, Molecular Cancer, vol.18,
    no.75, 2019.
    [50] C. Cerrone, R. Cerulli, B. Golden, Carousel greedy: a generalized greedy algorithm
    with applications in optimization, Computers & Operations Research, vol.85, 2017.
    [51] S.A. Curtis, The classification of greedy algorithms, Science of Computer
    Programming, vol.49, p.125-157, 2003.
    描述: 碩士
    國立政治大學
    應用數學系
    107751001
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0107751001
    数据类型: thesis
    显示于类别:[應用數學系] 學位論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    100101.pdf1381KbAdobe PDF256检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈