English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114012/145044 (79%)
Visitors : 52076774      Online Users : 217
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/142896


    Title: 縮圖設計如何引發閱聽人注意力: 眼動追蹤研究
    How thumbnail design affects the audience’s attention: An eye tracking study
    Authors: 黃士倩
    Huang, Shih-Chien
    Contributors: 陳百齡
    陳宜秀

    Chen, Pai-Lin
    Chen, Yih-siu

    黃士倩
    Huang, Shih-Chien
    Keywords: 影視縮圖
    混合處理模式
    相關性
    醒目性
    注意力
    Thumbnails
    Mixed processing mode
    Relevance
    Saliency
    Attention
    Date: 2022
    Issue Date: 2023-01-05 15:19:49 (UTC+8)
    Abstract: 本研究主要在探討影視縮圖的設計如何影響閱聽人的注意力。影視縮圖為出現在影音串流平台中的小方形影視圖片,閱聽者可以從影視縮圖中預先瀏覽關於影視的重要資訊(如:片名、演員)。而影視縮圖通常呈現在龐大訊息量的環境中,因此為了能夠在短時間內吸引閱聽人的注意,縮圖設計必須能夠符應人類配置注意力的機制。然而在影音串流影音平台的情境中,究竟是「醒目」的設計容易吸引閱聽人注意,還是和閱聽人過去經驗「相關」的影視訊息更容易吸引其注意力?而「相關性」和「醒目性」之間是否會受到彼此強度的影響而對閱聽人注意力產生不同的變化?本研究以「混合處理模式」中的相關性和醒目性概念在影視縮圖設計上的應用為主題進行研究。
    本研究採用眼球追蹤法的方式進行實驗。實驗中的主要自變項為「相關性」和「醒目性」,依變項為「注意力」。相關性部分,本研究以閱聽人的觀影類型偏好與影視縮圖設計的類型為操作定義;醒目性以縮圖中的主體和背景的色彩差異程度進行操控;注意力則以總凝視次數、總凝視時間及返回凝視次數來量測。本研究透過對相關性和醒目性的操縱,設計了4種設計組合的影視縮圖,分別為:高相關高醒目、高相關低醒目、低相關高醒目、低相關低醒目。實驗中將觀測相關性和醒目性對注意力的效果為何。實驗共招募30位受試者,受試者之分組設計採用組內設計(within design),每位受試者皆會觀看4種組合的影視縮圖設計。
    本研究將蒐集到的30名受試資料以二因子完全相依變異數分析處理,結果在總凝視次數、總凝視時間及返回凝視次數,三項眼動指標中都呈現:相關性對閱聽人的注意力有影響,而醒目性不具影響。因此,在影音串流平台的情境中,相較於色彩對比度高的醒目設計方式,影視縮圖傳遞的影視類型訊息是否和閱聽人本身影視類型偏好相符,對注意力具有明顯的影響效果。符合閱聽人觀影偏好類型的影視縮圖更能吸引閱聽人的注意力。此外,本研究亦發現閱聽人在高相關(即縮圖影視類型符合其觀影偏好)和低相關(即縮圖影視類型不符合其觀影偏好)的情境下,對於高醒目(即色彩對比度大)和低醒目(即色彩對比度小)的設計皆投入幾乎等量的注意力,因此相關性對閱聽人注意力造成的效果並不會受到醒目性水準強度帶來顯著的影響,相關性和醒目性之間無交互關係之存在。本研究的結果顯示,在影視縮圖設計上,應該讓縮圖的內容符合影視類型來吸引更多的注意力。
    This study investigates how the designs of thumbnails can affect an audience’s attention. Thumbnails are small rectangular pictures that appear in interfaces commonly seen on video streaming platforms. Audiences can use them to browse video selections or to access information about the video. They are often presented in an array of many alternatives. To attract the attention of the audience in a glimpse a thumbnail has to attract the audience’s attention. According to prior literatures, human attention operates by two processes: a top-down process that allocates attention to stimuli relevant to the human (relevance), and a bottom-up process driven by the strength of the physical feature (saliency). In the context of the video streaming platform, which process has a greater impact on viewers’ attention? Will relevance and saliency be affected by each other? This study explored the influence of these two factors in a mixed-processing model.
    This 2x2 eye-tracking experimental study manipulates two independent variables, relevance (defined by whether the thumbnail design conveys the preferred video genre of the viewer) and salience (the color contrast of the thumbnail design.) A total of 30 subjects were recruited for this experiment. In each of the 32 trials, subjects were exposed to four types of thumbnail designs simultaneously, and their eye-tracking data, including fixation count, fixation duration, and run count were captured.
    The findings showed that relevance had a significant effect on attention; saliency had no effect, and there was no interaction effect between relevance and saliency. The results indicated that, in the context of the thumbnail array in video streaming applications, viewers’ attention was attracted by high-relevance thumbnails, and visual salience had little impact. The study also found no interaction between the effect of relevance on attention and the level of saliency. The findings suggest that designs of video thumbnails should focus on conveying the genre of the video to attract viewers’ attention.
    Reference: 一、中文部分
    王藍亭、黃詩珮(2018)。〈入口網站工具列圖像判別與訊息評估研究〉。《書畫藝術學刊》,25:81 - 101。
    李小勤(2019)。 〈小而美?注意力經濟視角下的傳媒盈利新模式初探:以廣州為例〉。《傳播與社會學刊》,49,43-73.
    李仁豪、葉素玲(2004)。〈選擇注意力: 選空間或選物體〉。《應用心理研究》,21:165-194。
    吳京一、童麗珠(2017)。〈簡介工作記憶及其腦內機制〉,《科學教育月刊》,398,2-12。
    吳昭容(2019)。〈追蹤技術在幾何教育的應用與限制〉,Taiwan Journal of Mathematics Education, 6(2), 1-25。
    吳書宜(2007)。《新聞網頁不同廣告型式之注意力研究》。文化大學新聞系暨新聞研究所碩士論文。
    何俊亨、侯愷均(2016)。〈行動裝置圖標之設計風格分類與探討〉,《感性學報》,4(1):4-27。
    林欣融(2020)。〈台灣電影海報平面設計之研究〉,《中華印刷科技年報》,369-386。
    林品章、張照聆(2009)。〈圖像傳達系統化之理論基礎〉,《設計學研究》,12(2) :45-68。
    林鋐宇、周台傑(2010))。〈國小兒童注意力測驗之編製〉,《特殊教育研究學刊》,35(2) :29-53。
    孟祥瑄、王紹蓉(2021)。〈熟齡族Line「長輩圖」分享因素:使用滿足與社會情緒觀點〉,《資訊社會研究》,41:131-173。
    唐大崙、李天任、蔡政旻(2005)。〈喜好與視線軌跡關係初探─以色彩喜好排序作業為例〉, Chinese Journal of Psychology, 47(4), 339-351。
    唐大崙、張文瑜(2007)。〈利用眼動追蹤法探索傳播研究〉,《中華傳播學刊》,12,1-48。
    唐大崙、莊賢智(2005)。〈由眼球追蹤法探索電子報版面中圖片位置對注意力分佈之影響〉,《廣告學研究》,24,89-104。
    孫皓瓊(2012)。《解構圖像: 隱藏在圖像設計間的訊息傳達》。臺北市:佳魁資訊。
    張明傑譯(2008)。《視覺圖像與教學設計》。臺北市:心理。(Lohr, L. L. [2007]. Creating graphics for learning an performance: Lessons in visual literacy. Hoboken, N.J.: Prentice Hall Press.)
    國家通訊傳播委員會(2020)。《109年匯流發展調查》。臺北市:作者。
    陶振超(2011)。〈媒介訊息如何獲得注意力:突出或相關?認知取徑媒體研究之觀點〉,《新聞學研究》,107: 245-190。
    許孟琪(2010)。《「瀏覽」還是「搜尋」:探討認知處理模式對注意力捕捉的影響》。交通大學(現陽明交通大學)傳播研究所碩士論文。
    陳怡君、楊芳瑩(2020)。〈以眼球追蹤法探究解決結構良好問題的認知歷程: 星體運動為例〉,《科學教育學刊》,28(3):281-302。
    陳烜之(2007)。《認知心理學》。臺北市:五南圖書出版股份有限公司。
    陳學志、彭淑玲、曾千芝、邱皓政(2008)。〈藉由眼動追蹤儀器探討平均掃視幅度大小與創造力之關係〉,《教育心理學報》,39:127-149。
    陳學志、賴惠德、邱發忠(2010)。〈眼球追蹤技術在學習與教育上的應用〉,《教育科學研究期刊》, 55(4):39-68。
    陳錦忠(2008)。〈影像中圖像與造形符號的關係〉,《藝術學報》,83:77-90。
    黃夙蓮、陶振超(2015)。〈以眼球追蹤檢視突現廣告的注意力攫取〉,《資訊社會研究》,28:1-33。
    劉瑞芬、朱依靜(2018)。〈社交通訊類 App icon 設計之使用者經驗研究〉,《台北海洋科技大學學報》,9(2):105-119。
    蔡政旻、葉玉玲、李傳房、管倖生(2006年5月)。〈藉由眼動追蹤法探討錯視圖形之研究〉,「第11屆中華民國設計學會」,台中市西屯。
    鄭昭明(1993)。《認知心理學》。臺北市:桂冠。
    賴麗香、莊智媛、彭靖琦、彭淳玉、王詩婷(2015)。〈探討韓國熱潮商品購買意願之關鍵因素〉,《創新與經營管理學刊》:6(2),1-18。
    二、英文部分
    Anderson, Christoff, K., Panitz, D., De Rosa, E., & Gabrieli, J. D. (2013). Neural Correlates of the Automatic Processing of Threat Facial Signals. The Journal of Neuroscience, 23(13), 5627–5633.
    Baddeley, A. D., & Hitch, G. (1974). Working memory. In H. B. Gordon (Ed.), Psychology of learning and motivation (Vol. 8, pp. 47-89). Cambridge, Massachusetts: Academic press.
    Bernstein, A. S. (1968). The orienting response and direction of stimulus change. Psychonomic Science, 12(4), 127–128.
    Bernstein, A. S. (1979). The Orienting response as novelty and significance detector: reply to o’gorman. Psychophysiology, 16(3), 263–273.
    Black, A. (2017). Icons as carriers of information. In S. Walker, A. Black, P. Luna, & O. Lund, (Eds.), Information Design (pp. 331–346). London, UK: Routledge.
    Borji, A., Sihite, D. N., & Itti, L. (2013). What/where to look next? Modeling top -down visual attention in complex interactive environments. IEEE transactions on systems, man, and cybernetics: systems, 44(5), 523–538.
    Bradley, M. M., Keil, A., & Lang, P. J. (2012). Orienting and emotional perception: facilitation, attenuation, and interference. Frontiers in Psychology, 3, 493.
    Brosch, T., Pourtois, G., & Sander, D. (2010). The perception and categorisation of emotional stimuli: A review. Cognition and emotion, 24(3), 377–400.
    Buswell, G. T. (1935). How People Look at Pictures: A Study of the Psychology and Perception in Art. Chicago, IL: University of Chicago Press.
    Burnham, B. R., & Neely, J. H. (2008). A static color discontinuity can capture spatial attention when the target is an abrupt-onset singleton. Journal of Experimental Psychology: Human Perception and Performance, 34(4), 831–841.
    Chai, W. J., Abd Hamid, A. I., & Abdullah, J. M. (2018). Working memory from the psychological and neurosciences perspectives: a review. Frontiers in psychology, 9, 1–16.
    Chelazzi, L., Perlato, A., Santandrea, E., & Della Libera, C. (2013). Rewards teach visual selective attention. Vision research, 85, 58-72.
    Chen, P. L. (1992). Designing computer icons: the relative effectiveness of visual complexity on recognition memory. Unpublished doctoral dissertation, Indiana University, Bloomington Indiana.
    Choi, J., & Kim, C. (2015). Object-aware image thumbnailing using image classification and enhanced detection of ROI. Multimedia tools and applications, 75(23), 16191-16207.
    Cowan, N. (1988). Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information-processing system. Psychological bulletin, 104(2), 163–191.
    Curtis, B. (1989). Engineering Computer Look and Feel: User Interface Technology and Human Factors Engineering. Jurimetrics, 30(1), 51–78.
    Davis, E. T., & Palmer, J. (2004). Visual search and attention: An overview. Spatial Vision, 17(4-5), 249–255。
    De Weerd, P. (2003) Attention, neural basis of. In L. Nadel (Ed.), Encyclopedia of cognitive science (Vol. 1, pp. 238–246). London: Nature Publishing Group.
    Diaz Perez, F.J. (2000). Sperber and Wilson`s relevance theory and its applicability to advertising discourse: Evidence from British press advertisements. Atlantis, 22(2), 37-50.
    Elhilali, M., Xiang, J., Shamma, S. A., & Simon, J. Z (2009). Interaction between attention and bottom-up saliency mediates the representation of foreground and background in an auditory scene. PLoS biology, 7(6), 1-15.
    Falkinger, J. (2008). Limited attention as a scarce resource in information‐rich economies. The Economic Journal, 118(532), 1596-1620.
    Feijs, L. (2009). Commutative product semantics. Design and semantics of form and movement, 12-19.
    Folk, C. L., Leber, A. B., & Egeth, H. E. (2002). Made you blink! Contingent attentional capture produces a spatial blink. Perception & psychophysics, 64(5), 741–753.
    Gershon, N., & Eick, S. G. (1997). Information visualization. IEEE Computer Graphics and Applications, 17(4), 29-31.
    Horton, W. K. (1994). The icon book: Visual symbols for computer systems and documentation. New York, NY: John Wiley & Sons, Inc.
    Isherwood, S. (2009). Graphics and semantics: the relationship between what is seen and what is meant in icon design. In D. Harris (Eds.), Engineering psychology and cognitive ergonomics (pp. 197–205). Germany, Berlin: Springer.
    Itti, L., & Koch, C. (2001). Computational modelling of visual attention. Nature reviews neuroscience, 2(3), 194-203.
    Koik, B. T., Ibrahim, H., & Arik, S. (2014). Thumbnail image with blurry edge information utilizing half factor rules. Mathematical problems in engineering, 2014, 1-9.
    Krauzlis, R. J., Wang, L., Yu, G., & Katz, L. N. (2021). What is attention? Wiley Interdisciplinary Reviews: Cognitive Science, e1570.
    Kirvelis, D., & Vanagas, V. (2015). Sokolov’s Neural Model of Stimuli as Neuro-Cybernetic Approach to Anticipatory Perception. In M. Nadin (Ed.), Anticipation: Learning from the Past (pp. 383–393). Cham, Switzerland: Springer.
    Lam, S. Y., Chau, A. W. L., & Wong, T. J. (2007). Thumbnails as online product displays: how consumers process them. Journal of interactive marketing, 21(1), 36-59.
    Liao, H. I., & Yeh, S. L. (2007). Involuntary orienting caused by salient stimuli outside focal attention: Comparison of two paradigms. Chinese Journal of Psychology, 49(2), 145–158.
    Liu, W., Mei, T., Zhang, Y., Che, C., & Luo, J. (2015). Multi-task deep visual-semantic embedding for video thumbnail selection. Proceedings of the IEEE conference on computer vision and pattern recognition, 3707-3715.
    Macaluso, E. (2015). Salience/Bottom-Up Attention. In W. T. Arthur (Ed.), Brain Mapping: An Encyclopedic Reference (pp. 289–294). Amsterdam, Netherlands: Elsevier Inc.
    Maniura, R. (2011). Icon/image. Material Religion, 7(1), 50-56.
    Marchesotti, L., Cifarelli, C., & Csurka, G. (2009, September). A framework for visual saliency detection with applications to image thumbnailing. Paper presented at the IEEE 12th International Conference on Computer Vision. Kyoto, Japan.
    McDougall, S. J. P., De Bruijn, O., & Curry, M. B. (2000). Exploring the effects of icon characteristics on user performance: the role of icon concreteness, complexity, and distinctiveness. Journal of experimental psychology, 6(4), 291-306.
    Memon, A., Banerjee, I., & Nagarajan, A. (2003, November). GUI ripping: Reverse engineering of graphical user interfaces for testing. Paper presented at the 10th Working Conference on Reverse Engineering, British Columbia, Canada.
    Mohanty, A., & Sussman, T. J. (2013). Top-down modulation of attention by emotion. Frontiers in Human Neuroscience, 7, 102.
    Näsänen, R., & Ojanpää, H. (2003). Effect of image contrast and sharpness on visual search for computer icons. Displays, 24(3), 137-144.
    Neo, G., & Chua, F. K. (2006). Capturing focused attention. Perception & Psychophysics, 68(8), 1286–1296.
    Ng, A. W. & Chan, A. H. (2009). What makes an icon effective? AIP Conference Proceedings, 1089(1), 104-114.
    Oliveira, L., Mocaiber, I., David, I. A., Erthal, F., Volchan, E., & Pereira, M. (2013). Emotion and attention interaction: a trade-off between stimuli relevance, motivation and individual differences. Frontiers in Human Neuroscience, 7, 364.
    Öhman, A., Lundqvist, D., & Esteves, F. (2001). The face in the crowd revisited: a threat advantage with schematic stimuli. Journal of personality and social psychology, 80(3), 381–396.
    Passini, S., Strazzari, F. & Borghi, A. (2008). Icon-function relationship in toolbar icons. Displays, 29(5), 521-525.
    Ramos I., Barbosa H. (2021) The Future is Now: What’s Next for Film Posters? In N. Martins, D. Brandão (Eds.), Advances in Design and Digital Communication (pp. 568–581). Barcelos, Portugal: Springer International Publishing.
    Salvucci, D. D., & Anderson, J. R. (1998). Tracing eye movement protocols with cognitive process models. In A. G. Morton & J. D. Sharon (Eds.), Proceedings of the Twentieth Annual Conference of the Cognitive Science Society (pp. 923-928). Hillsdale, NJ: Lawrence Erlbaum Associates.
    Sassoon, R., & Gaur, A. (1997). Signs, symbols and icons: Pre-history to the computer age. Bristol, UK: Intellect Books.
    Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information processing: I. Detection, search, and attention. Psychological Review, 84(1), 1-66.
    Schröder, S. & Martina, Z. (2006). Icon design on small screens: effects of miniaturization on speed and accuracy in visual search. Proceedings of the human factors and ergonomics society, 50(5), 656-660.
    Shen, Z., Zhang, L., Li, R., & Liang, R. (2020). The effects of icon internal characteristics on complex cognition. International journal of industrial ergonomics, 79, 1-11.
    Shi, L., Wang, J., Xu, L., Lu, H., & Xu, C. (2009, June). Context saliency based image summarization. Paper presented at 2009 IEEE International Conference on Multimedia and Expo, New York, NY.
    Shimono, A., Kakui, Y., & Yamasaki, T. (2020, October). Automatic YouTube Thumbnail Generation and Its Evaluation. Paper presented at Multimedia Artworks Analysis and Attractiveness Computing in Multimedia, Dublin, Ireland.
    Song, Y., Redi, M., Vallmitjana, J., & Jaimes, A. (2016, October). To click or not to click: Automatic selection of beautiful thumbnails from videos. Paper presented at proceedings of the 25th ACM international on conference on information and knowledge management, New York, NY.
    Stentiford, F. W. (2003). Attention-based similarity measure with application to content-based information retrieval. Storage and Retrieval for Media Databases, 5021, 221–232.
    Sun, J. & Ling, H. (2013). Scale and object aware image thumbnailing. International journal of computer vision, 104(2), 135-153.
    Theeuwes, J. (1992). Perceptual selectivity for color and form. Perception & psychophysics, 51(6), 599–606.
    Thylstrup, N., & Teilmann-Lock, S. (2017). The transformative power of the thumbnail image: Media logistics and infrastructural aesthetics. First Monday, 22, 1-14.
    Treisman, A. M. & Gelade, G. (1980). A feature-integration theory of attention.
    Cognitive psychology, 12(1), 97-136.
    Van Duyne, D.K., Landay, J.A., & Hong, J.I. (2003). The Design of Sites: Patterns, Principles, and Processes for Crafting a Customer-Centered Web Experience. Boston, MA: Addison-Wesley
    Vuilleumier, P., Armony, J. L., Driver, J., & Dolan, R. J. (2001). Effects of attention and emotion on face processing in the human brain: an event-related fMRI study. Neuron, 30(3), 829–841.
    Wang, H., Li, Z., Li, Y., Gupta, B. B., & Choi, C. (2020). Visual saliency guided complex image retrieval. Pattern Recognition Letters, 130, 64-72.
    Whitehouse, A. J. O, Maybery, M. T., & Durkin, K. (2006). The development of the picture-superiority effect. British journal of developmental psychology, 24(4), 767-773.
    Yang, M., & Roskos-Ewoldsen, D. R. (2007). The effectiveness of brand placements in the movies: Levels of placements, explicit and implicit memory, and brand-choice behavior. Journal of Communication, 57(3), 469-489.
    Yangandul, C., Paryani, S., Le, M., & Jain, E. (2018, June). How many words is a picture worth? attention allocation on thumbnails versus title text regions. Paper presented at the proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications, New York: NY.
    Yantis, S. (2000). Goal-directed and stimulus-driven determinants of attentional control. In S. Monsell & J. Driver (Eds.), Control of cognitive processes: Attention and performance XVIII (pp. 73-103). Cambridge, MA: MIT Press
    Yantis, S., & Jonides, J. (1984). Abrupt visual onsets and selective attention: evidence from visual search. Journal of Experimental Psychology: Human perception and performance, 10(5), 601–621.
    Yus, F. (2003). Humor and the search for relevance. Journal of Pragmatics, 35(9), 1295-1331.
    Zhang, Y. & Goh, K. H. (2018). Attracting versus sustaining attention in the information economy. In W. Cho, M. Fan, M. J. Shaw, B. Yoo, & H. Zhang (Eds.), Digital transformation: Challenges and opportunities (pp. 1–14). Cham, Denmark: Springer International Publishing.
    Zhao, B., Li, H., Wang, R., & Luo, X. (2020, September). Automatic Generation of Informative Video Thumbnail. Paper presented at the 2020 8th International Conference on Digital Home, Dalian: China.
    三、網路資料
    〈政治大學眼動與閱讀實驗室〉(無日期)。取自政治大學眼動與閱讀實驗室,https://emrlab.nccu.edu.tw/index.php?option=com_content&view=article&id=22&Itemid=128&lang=zh#research_top
    Koh, B., & Chi, F. (2022). Visual Persuasion: An Exploration of the Relation between the Visual Attributes of Thumbnails and the View-Through of Videos. Retrieved from SSRN database: https://ssrn.com/abstract=3611735
    Description: 碩士
    國立政治大學
    傳播學院傳播碩士學位學程
    109266005
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0109266005
    Data Type: thesis
    DOI: 10.6814/NCCU202201740
    Appears in Collections:[傳播學院傳播碩士學位學程] 學位論文

    Files in This Item:

    File Description SizeFormat
    600501.pdf2390KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback