English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52519660      Online Users : 512
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/142873
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/142873


    Title: 謝爾賓斯基墊片上一般獨立集數量的漸近行為
    Asymptotic enumeration of general independent sets on the Sierpinski gasket
    Authors: 陳品樺
    Chen, Pin-Hua
    Contributors: 陳隆奇
    Chen, Lung-Chi
    陳品樺
    Chen, Pin-Hua
    Keywords: 謝爾賓斯基墊片
    獨立集
    Sierpinski gasket
    Independent sets
    Date: 2022
    Issue Date: 2023-01-05 15:13:27 (UTC+8)
    Abstract: 計算獨立集的數量一直都是個重要且有趣的問題,在二維整數晶格中,
    獨立集的數量上熵的極限存在,並估計其上下界,已被 [13] 探討。此外在
    二維與三維謝爾賓斯基墊片獨立集的數量上熵的極限存在,並估計其上下
    界也被 [32] 探討。
    在本篇論文中,我們將推廣 [32] 二維的謝爾賓斯基墊片的獨立集個數
    到機率分布,其解釋如下:令 A 是一個有限符號集合,並給定任意子集
    S ⊂ A,假設 p ∈ (0, 1) 是二維的謝爾賓斯基墊片裡的每一個點屬於 S 的機率,又令 F = {ij : ij ∈ E, i, j ∈ S},其中 E 是謝爾賓斯基墊片的邊,這是一種不被允許出現的情況。舉個特例,當 A = {0, 1}, S = {0} 而且 p = 1/2 (均勻分布) 在這種情況之下,就是 [32] 這篇文章的模型。這篇文章我們將研究這個分布模型 (p ∈ (0, 1)) 中熵的漸近行為。
    Enumerate the number of independent sets or golden mean shift on the graph is a very interesting and important problem. For the square lattice, it was shown that the limit of the entropy of the number of independent sets exists and its upper and lower bounds were estimated [13], and its had been considered on various graphs [15]–[17]. Moreover, it is of interest to consider independent sets on self-similar fractal lattices which have scaling invariance rather than translational invariance [18]. Sierpinski gasket is a kind of self-similar fractal lattices, and the number of independent sets on Sierpinski gasket had been investigated in [32]. In
    this thesis, we extend the independent sets in [32] to be more general model on the two-dimensional Sierpinski gasket. Let A is a set of symbol and given any S ⊂ A. Let p ∈ (0, 1) be the probability of each vertex of SG(n) with a symbol
    that is in symbols S, and 1 − p be the probability of each vertex of SG(n) with a symbol that is not in symbols S where F = {ij : i, j ∈ S} is a forbidden blocks between nearest-neighbor vertices. In particular, it is so called a golden mean shift or independent set when A = {0, 1}, S = {0} and p = 1/2 . We will investigate the asymptotes behavior of the entropy in this general model.
    Reference: [1] L. K. Runnels, Phase transitions of hard sphere lattice gases, Communications in Mathematical Physics 40 (1975) 37–48.
    [2] G. R. Brightwell, O. Häggström, P. Winkler, Nonmonotonic behavior in hard-core and Widom-Rowlinson models, Journal of Statistical Physics 94 (1999) 415–435.
    [3] J. R. Heringa, H. W. J. Blöte, E. Luijten, High-dimensional lattice gases, Journal of Physics
    A-Mathematical and General 33 (2000) 2929–2941.
    [4] W. Guo, H. W. Blöte, Finite-size analysis of the hard-square lattice gas, Physical Review E 66 (2002) 046140.
    [5] I. Gutman, F. Harary, Generalizations of the matching polynomial, Utilitas Mathematica
    24 (1983) 97–106.
    [6] A. D. Scott, A. D. Sokal, The repulsive lattice gas, the independent-set polynomial, and the Lovász local lemma, Journal of Statistical Physics 118 (2005) 1151–1261.
    [7] J. van den Berg, J. E. Steif, Percolation and the hard-core lattice gas model, Stochastic Processes and their Applications 49 (1994) 179–197.
    [8] O. Häggström, Ergodicity of the hard-core model on Z
    2 with parity-dependent activities,
    Arkiv for Matematik 35 (1997) 171–184.
    [9] J. Kahn, An entropy approach to the hard-core model on bipartite graphs, Combinatorics,
    Probability and Computing 10 (2001) 219–237.
    [10] M. Dyer, C. Greenhill, On Markov chains for independent sets, Journal of Algorithms 35
    (2000) 17–49.

    [11] H. Prodinger, R. F. Tichy, Fibonacci numbers of graphs, The Fibonacci Quarterly 20 (1982)
    16–21.
    [12] I. Kaplansky, Solution of the ”Problème des ménages”, Bulletin of the American
    Mathematical Society 49 (1943) 784–485.
    [13] N. J. Calkin, H. S. Wilf, The number of independent sets in a grid graph, SIAM Journal on Discrete Mathematics 11 (1998) 54–60.
    [14] R. J. Baxter, Planar lattice gases with nearest-neighbor exclusion, Annals of Combinatorics
    3 (1999) 191–203.
    [15] V. Linke, Bipartite graphs can have any number of independent sets, Discrete Mathematics
    76 (1989) 131–136.
    [16] H. F. Law, On the number of independent sets in a tree, Electronic Journal of Combinatorics
    17 (2010) #N18.
    [17] Y. Zhao, The number of independent sets in a regular graph, Combinatorics, Probability
    and Computing 19 (2010) 315–320.
    [18] E. Teufl, S. Wagner, Enumeration problems for classes of self-similar graphs, Journal of
    Combinatorial Theory Series A 114 (2007) 1254–1277.
    [Mandelbrot(1982)] B. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, San Francisco, 1982.
    [Falconer(2003)] K. J. Falconer, Fractal Geometry: Mathematical Foundations and Applications (2nd edition), Wiley, Chichester, 2003.
    [19] Y. Gefen, B. B. Mandelbrot, A. Aharony, Critical phenomena on fractal lattices, Physical Review Letters 45 (1980) 855–858.
    [20] Y. Gefen, A. Aharony, B. B. Mandelbrot, S. Kirkpatrick, Solvable fractal family, and its
    possible relation to the backbone at percolation, Physical Review Letters 47 (1981) 1771.
    [21] R. Rammal, G. Toulouse, Spectrum of the Schrödinger equation on a self-similar structure,
    Physical Review Letters 49 (1982) 1194–1197.

    [22] S. Alexander, Superconductivity of networks. A percolation approach to the effects of
    disorder, Physical Review B 27 (1983) 1541–1557.
    [23] E. Domany, S. Alexander, D. Bensimon, L. P. Kadanoff, Solutions to the Schrödinger
    equation on some fractal lattices, Physical Review B 28 (1983) 3110–3123.
    [24] Y. Gefen, A. Aharony, B. B. Mandelbrot, Phase transitions on fractals: I. Quasi-linear
    lattices, Journal of Physics A-Mathematical and General 16 (1983) 1267–1278.
    [25] R. A. Guyer, Diffusion on the Sierpinski gaskets: A random walker on a fractally structured
    object, Physical Review A 29 (1984) 2751–2755.
    [26] K. Hattori, T. Hattori, S. Kusuoka, Self-avoiding paths on the pre-Sierpinski gasket,
    Probability Theory and Related Fields 84 (1990) 1–26.
    [27] D. Dhar, A. Dhar, Distribution of sizes of erased loops for loop-erased random walks,
    Physical Review E 55 (1997) R2093–R2096.
    [28] F. Daerden, C. Vanderzande, Sandpiles on a Sierpinski gasket, Physica A 256 (1998) 533–546.
    [29] D. Dhar, Branched polymers on the Given-Mandelbrot family of fractals, Physical Review E 71 (2005) 031801.
    [30] S.-C. Chang, L.-C. Chen, W.-S. Yang, Spanning trees on the Sierpinski gasket, Journal of Statistical Physics 126 (2007) 649–667.
    [31] S.-C. Chang, L.-C. Chen, Spanning forests on the Sierpinski gasket, Discrete Mathematics
    and Theoretical Computer Science 10 (2008) 55–76.
    [32] S.-C. Chang, L.-C. Chen, Asymptotic enumeration of independent sets on the Sierpinski gasket, Flomat, 27:1 (2013).
    [33] S.-C. Chang, L.-C. Chen, Number of connected spanning subgraphs on the Sierpinski
    gasket, Discrete Mathematics and Theoretical Computer Science 11 (2009) 55–78.
    [34] S.-C. Chang, L.-C. Chen, Dimer coverings on the Sierpinski gasket, Journal of Statistical Physics 131 (2008) 631–650.

    [35] S.-C. Chang, L.-C. Chen, Dimer-monomer model on the Sierpinski gasket, Physica A 387
    (2008) 1551–1566.
    [36] S.-C. Chang, L.-C. Chen, Hamiltonian walks on the Sierpinski gasket, Journal of
    Mathematical Physics 52 (2011) 023301.
    [37] F. Harary, Graph Theory, Addison-Wesley, New York, 1969.
    [38] N. L. Biggs, Algebraic Graph Theory (2nd edition) Cambridge University Press,
    Cambridge, 1993.
    Description: 碩士
    國立政治大學
    應用數學系
    108751010
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0108751010
    Data Type: thesis
    DOI: 10.6814/NCCU202201726
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File SizeFormat
    101001.pdf641KbAdobe PDF260View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback