English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 116918/147948 (79%)
造訪人次 : 64872340      線上人數 : 179
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/142865


    題名: An attention algorithm for solving large scale structured L0-norm penalty estimation problems
    作者: 顏佑銘
    Yen, Yu-Min
    Yen, Tso-Jung
    貢獻者: 國貿系
    關鍵詞: Blockwise coordinate descent algorithms;Model selection;Nonconvex optimization;Proximal operators;Randomized algorithms
    日期: 2021-01
    上傳時間: 2022-12-27 10:57:04 (UTC+8)
    摘要: Technology advances have enabled researchers to collect large amounts of data with lots of covariates. Because of the high volume (large n) and high variety (large p) properties, model estimation with such big data has posed great challenges for statisticians. In this paper, we focus on the algorithmic aspect of these challenges. We propose a numerical procedure for solving large scale regression estimation problems involving a structured l0-norm penalty function. This numerical procedure blends the ideas of randomization, blockwise coordinate descent algorithms, and a closed-form representation of the proximal operator of the structured l0-norm penalty function. In particular, it adopts an “attention” mechanism that exploits the iteration errors to build a sampling distribution for picking up regression coefficients for updates. Simulation study shows the proposed numerical procedure is competitive when comparing with other algorithms for sparse estimation in terms of runtime and statistical accuracy when both the sample size and the number of covariates become large.
    關聯: Japanese Journal of Statistics and Data Science, Vol.4, pp.345-371
    資料類型: article
    DOI 連結: https://doi.org/10.1007/s42081-020-00101-z
    DOI: 10.1007/s42081-020-00101-z
    顯示於類別:[國際經營與貿易學系 ] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML2411檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋