English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113656/144643 (79%)
Visitors : 51731248      Online Users : 634
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 資訊管理學系 > 學位論文 >  Item 140.119/142643
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/142643


    Title: AI 技術堆疊架構模型
    The AI Tech-Stack Model
    Authors: 徐志鈞
    Hsu, Chih-Chun
    Contributors: 蔡瑞煌
    張欣綠

    Tsaih, Rua-Huan
    Chang, Hsin-Lu

    徐志鈞
    Hsu, Chih-Chun
    Keywords: AI 技術堆疊架構
    綜合 IT/IS 框架
    人工智慧
    人工智慧暨服務
    智慧旅遊
    AI tech-stack
    Synthesizing IT/IS framework
    AI
    AIaaS
    Smart tourism
    Date: 2022
    Issue Date: 2022-12-02 15:21:01 (UTC+8)
    Abstract: 先進的 AI 技術已被企業應用於支持業務流程自動化,提供數據洞察力,並促進員工和客戶的溝通。數位原生科技巨頭 FAAMG 也應用 AI技術創造獨特的競爭優勢,並同時整合雲堆疊與 AI 核心技術提供 AIaaS 服務,於新冠疫情期間表現優異。然而根據研究,大多數企業在開發部署 AI 項目時仍然面臨策略、管理和運營等不同程度的挑戰,針對上述挑戰問題在過去的文獻中尚未得到很好的解決。
    基於上述議題,本研究提出了 AI 技術堆疊架構及綜合 IT/IS 框架以傳遞 AI 支持的價值主張。提議的綜合 IT/IS 框架整合了企業現有的 IT/IS 系統、協作數位業務平台與期望 AI 系統的系統分析框架,讓主管能分析自身所需的內/外連接、現有 IT/IS 系統及 AI 管理/分析等三種能力,達到 AI 時代競爭所需具備的網路、學習及聚合的整合綜效。同時本研究提議的 AI 技術堆疊架構歸納出 AI解決方案層、AI服務層、AI數據管道層、AI演算法層、AI框架層、AI平台層和 AI基礎設施層等七層架構,幫助高階主管參與開發部署 AI 系統時做出自行設計、選擇 AIaaS 或第三方開放軟體的方案,企業依此析能擬定 AI 項目開發及部署時程的技術分析架構,以協助企業解決 AI 策略、管理和運營的挑戰。
    本研究採用專家訪談方法驗證 AI 技術堆疊架構和綜合 IT/IS 框架,經訪談四家旅遊公司高階主管,直接參與分析綜合 IT/IS 框架所需的三種能力來開發部署智慧推薦系統,依序探討 AI 技術堆疊分層架構選擇內部自行開發、或委外 AIaaS 提供工具的最適決策。過程顯示高階主管的全程參與確認 AI 支持的價值主張並擬定投資計畫對 AI 項目的成功起到至關重要的因素,訪談結果顯示提議的清晰易懂、鬆耦合及模塊化的 AI 技術堆疊架構及綜合 IT/IS 框架,提供 AI 項目主管評估 AI 項目專案生命週期管理是不可或缺的系統及技術參考架構。最後本研究也針對研究限制及後續研究提出建言。
    Emerging AI technologies have been adopted by enterprises to support business process automation, provide data insights, and facilitate employee and customer engagement. The digital native technology giant FAAMG has also deployed AI technology to create a unique competitive advantage, and at the same time integrated cloud stack and AI core technology to provide AIaaS services, thus performing well during the pandemic period. However, according to research, most enterprises still encounter different levels of challenges in strategy, management, and operation when developing and deploying AI projects. Unfortunately, the above challenges have not been well addressed in the research literature.
    Based on the above challenges’ topics, this study proposes an AI tech-stack model and a synthesizing IT/IS framework to deliver the AI-enabled value proposition. The proposed synthesizing IT/IS framework integrates a company`s incumbent IT/IS systems, collaborating digital business platforms, and desired AI systems, which allows executives to analyze their own required internal/external connectivity, incumbent IT/IS systems, and AI project management/analysis capabilities. The framework will help the company to achieve the integrated synergy of network, learning, and aggregation effect to compete in the age of AI. At the same time, the proposed AI tech-stack architecture summarizes the AI solution layer, AI service layer, AI data pipeline layer, AI algorithm layer, AI framework layer, AI platform layer, and AI infrastructure layer. When participating in the development and deployment of AI systems, make in-house designs, choose AIaaS or third-party open software solutions, and assist enterprises to formulate technical analysis frameworks for AI project development and deployment schedules to help enterprises solve AI strategy, management, and operation challenges.
    This research conducted the focus group interview method to verify the AI tech-stack model and synthesizing IT/IS framework. After interviewing senior executives of four local travel companies, they directly participate discuss in the analysis of the three capabilities required by the synthesizing IT/IS framework to develop and deploy a smart recommendation system. The AI tech-stack layered architecture chooses the optimal decision of internal development, AIaaS, or third-party open software. The process shows that the senior executives fully participate in confirming the AI-enabled value proposition and formulating investment plans is a critical factor for the success of AI projects, and the interview results show that the proposed comprehensive, loosely coupled, and modular of AI tech-stack architecture and synthesizing IT/IS framework to provide AI project managers with an indispensable system and technical reference framework for evaluating AI project life cycle management. Finally, this study also highlights research limitations and makes suggestions for future research.
    Reference: Agrawal, A., Gans, J. S., and Goldfarb, A. (2019). Artificial intelligence: the ambiguous labor market impact of automating prediction. Journal of Economic Perspectives, 33(2):31–50.
    Altexsoft. (25 Apr, 2021). Comparing Machine Learning as a Service: Amazon, Microsoft Azure, Google Cloud AI, IBM Watson. available at https://www.altexsoft.com/blog/datascience/comparing-machine-learning-as-a-service-amazon-microsoft-azure-google-cloud-ai-ibm-watson/
    Amazon Web Services Inc. (2021). Machine Learning Stack, available at, https://docs.aws.amazon.com/wellarchitected/latest/machine-learning-lens/machine-learning-stack.html
    Aswani, R. (2020) Rise of AI-as-a-services – Cloud services driving AI adoption, available at https://community.nasscom.in/communities/iot-ai/rise-of-ai-as-a-service---cloud-services-driving-ai-adoption.html
    Bala, R., Gill, B. and 3 more (2021). Magic quadrant for cloud infrastructure and platform services. Gartner report, July, 27. - ID G00736363
    BasuMallick, C., (February 10, 2022), Top 10 Open Source Artificial Intelligence Software in 2021, available at https://www.toolbox.com/tech/innovation/articles/top-open-source-artificial-intelligence-software/
    Brock, J. K. U., & Von Wangenheim, F. (2019). Demystifying AI: What digital transformation leaders can teach you about realistic artificial intelligence. California Management Review, 61(4), 110-134.
    Brownlee, J., (November 11, 2019). 14 Different Types of Learning in Machine Learning. available at https://machinelearningmastery.com/types-of-learning-in-machine-learning/
    Brynjolfsson, E. & McAfee, A. (2017). What`s driving the machine learning explosion? available at https://hbr.org/2017/07/whats-driving-the-machine-learning-explosion
    Bughin, J., McCarthy, B., & Chui, M. (August 28, 2017). A survey of 3,000 executives reveals how businesses succeed with AI. Harvard Business Review. available at https://hbr.org/2017/08/a-survey-of-3000-executives-reveals-how-businesses-succeed-with-ai
    Buhalis, D., & Amaranggana, A. (2015). Smart Tourism Destinations: Enhancing Tourism Experience Through Personalisation of Services. In Tussyadiah, I. & Inversini, A., (Eds.), Information and Communication Technologies in Tourism 2015, pp. 377-389. Heidelberg, Germany: Springer.
    Chui, M. (2017). Artificial intelligence the next digital frontier? McKinsey and Company Global Institute, 47, 3-6.
    Chui, M., Manyika, J., Miremadi, M., Henke, N., Chung, R., Nel, P., & Malhotra, S. (2018). Notes from the AI frontier: Insights from hundreds of use cases. McKinsey Global Institute.
    Cockburn, I. M., Henderson, R., and Stern, S. (2018). The impact of artificial intelligence on innovation. Technical report, National bureau of economic research.
    Colak A., (April, 8, 2020). A Guide to 27+ Salesforce Einstein AI Products and Tools, available at https://www.salesforceben.com/guide-to-einstein-ai-products-and-tools/
    Cusumano, M. A., Yoffie, D. B. & Gawer, A. (2020). The Future of Platforms. MIT Sloan Management Review, 61(3), 46-54.
    Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard business review, 96(1), 108-116.
    Das, S. C., Panigrahi, J. K., & Mallik, S. K. (2018). Technological innovation and integration of enterprise applications (ea) for achieving operational excellence: An empirical analysis of trends in erp systems. International Journal of Mechanical Engineering and Technology, 9(5), 733.
    Deloitte Insight. (2019). Artificial Intelligence: From Expert-Only to Everywhere (2019), TMT Prediction 2019. available at https://www2.deloitte.com/xe/en/insights/industry/technology/technology-media-and-telecom-predictions/cloud-based-artificial-intelligence.html
    Evans PC, Gawer A (2016) The rise of the platform enterprise: a global survey. Center for Global Enterprise, New York. available at http://www.thecge.net/wp-content/uploads/2016/01/PDF-WEB-Platform-Survey_01_12.pdf (Accessed February 16, 2016)
    Gao, W., Tang, F., Zhan, J., Lan, C., Luo, C., Wang, L., ... & Hao, T. (2020). AIBench: An Agile Domain-specific Benchmarking Methodology and an AI Benchmark Suite. arXiv preprint arXiv:2002.07162.
    Gambardella, A. and McGahan, A. M. (2010). Business-model innovation: General purpose technologies and their implications for industry structure. Long range planning, 43(2-3):262–271.
    Geeksforgeeks. (14 Oct, 2020). Top Cloud Computing Platforms for Machine Learning, https://www.geeksforgeeks.org/top-cloud-computing-platforms-for-machine-learning/#:~:text=There%20are%20many%20cloud%20computing,Google%20Cloud%2C%20and%20IBM%20Cloud
    Godse, M., & Mulik, S. (2009, September). An approach for selecting software-as-a-service (SaaS) product. In 2009 IEEE International Conference on Cloud Computing (pp. 155-158). IEEE.
    Gretzel U, Sigala M, Xiang Z, Koo C (2015). Smart tourism: foundations and developments. Electron Mark 25(3):179–188
    Hasan, M., (April 17, 2021). The 20 Best AI and Machine Learning Software and Frameworks. available at https://www.ubuntupit.com/best-ai-and-machine-learning-software-and-frameworks/
    Hofstee , E. (July 4, 2019). What are the infrastructure requirements for Artificial Intelligence?. available at https://blog.leaseweb.com/2019/07/04/infrastructure-requirements-ai/
    Huckabee, T. (July 2, 2020), Digital Transformations: the COVID-19 crisis is speeding up the need for business to compete in the digital economy. available at https://tehcpa.net/digital-transformation/digital-transformations-the-covid-19-crisis-is-speeding-up-the-need-for-business-to-compete-in-the-digital-economy/
    Iansiti, M., & Lakhani, K. R. (2020a). Competing in the Age of AI: How machine intelligence changes the rules of business, Harvard Business Review, 98(1) January–February, 60–67.
    Iansiti, M., & Lakhani, K. R. (2020b). From Disruption to Collision: The New Competitive Dynamics. MIT Sloan Management Review, 61(3), 34-39.
    Iansiti, M., & Lakhani, K. R. (2020c). Competing in the Age of AI: Strategy and Leadership When Algorithms and Networks Run the World. Boston: Harvard Business Review Press.
    Kakatkar, C., Bilgram, V., & Füller, J. (2020). Innovation analytics: Leveraging artificial intelligence in the innovation process. Business Horizons, 63(2), 171-181.
    Khalid, S., Jarek, K., & Donna, S., (May, 2021). Practitioners guide to MLOps: A framework for continuous delivery and automation of machine learning. Google, available at https://services.google.com/fh/files/misc/practitioners_guide_to_mlops_whitepaper.pdf
    Krensky, P., Idoine, C., and 5 more (2021). Magic Quadrant for Data Science and Machine Learning Platforms. Gartner report, Updated November 2. - ID G00467320.
    Magic Quadrant for Data Science and Machine Learning Platforms. Updated 2 November 2021, Published 1 March 2021 - ID G00467320.
    Magic Quadrant for Cloud Infrastructure and Platform Services. Published 27 July 2021 - ID G00736363.
    Magoulas, R.and Swoyerh, S. (18. March 2020), AI adoption in the enterprise 2020, O’Reilly. available at https://www.oreilly.com/radar/ai-adoption-in-the-enterprise-2020/
    McAfee, A. (2011). What every CEO needs to know about the cloud. Harvard business review, 89(11), 124-132.
    Michel, S. (2014). Capture more value. Harvard business review, 92(10), 20.
    Microsoft Corp. (May 1, 2018). Microsoft Artificial Intelligence: A platform for all information worker skill set levels, available at https://www.microsoft.com/en-us/us-partner-blog/2018/05/01/microsoft-artificial-intelligence-a-platform-for-all-information-worker-skill-set-levels/
    Niknejad, N., Ismail, W., Ghani, I., Nazari, B., & Bahari, M. (2020). Understanding Service-Oriented Architecture (SOA): A systematic literature review and directions for further investigation. Information Systems, 91, 101491.
    PAT Research, Top 18 Artificial Intelligence Platforms. available at https://www.predictiveanalyticstoday.com/artificial-intelligence-platforms/
    Pandl, K. D., Teigeler, H., Lins, S., Thiebes, S., & Sunyaev, A. (2021). Drivers and Inhibitors for Organizations’ Intention to Adopt Artificial Intelligence as a Service. In Proceedings of the 54th Hawaii International Conference on System Sciences (p. 1769).
    Panwar, R. (2020). It`s time to develop local production and supply networks. Strategy Insight Note. California Management Review. April 28. Available at: https://cmr.berkeley.edu/2020/04/local-production-supply- networks/
    Plastino, E. and Purdy, M. (2018). Game changing value from artificial intelligence: eight strategies. Strategy & Leadership.
    Porter, M. E., & Millar, V. E. (1985). How information gives you competitive advantage, Harvard Business Review, 63(4) July–August, 149–160.
    Reixa, M., Costa, C., & Aparicio, M. (2012, June). Cloud services evaluation framework. In Proceedings of the Workshop on Open Source and Design of Communication (pp. 61-69).
    Saripalli, P., & Pingali, G. (2011, July). Madmac: Multiple attribute decision methodology for adoption of clouds. In 2011 IEEE 4th international conference on cloud computing (pp. 316-323). IEEE.
    Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., ... & Dennison, D. (2015). Hidden technical debt in machine learning systems. Advances in neural information processing systems, 28, 2503-2511.
    Shivraj, P., (2021). "RISE OF FACEBOOK, AMAZON, APPLE, NETFLIX, GOOGLE DURING COVID-19 PANDEMIC". Electronic Theses, Projects, and Dissertations. 1311. available at https://scholarworks.lib.csusb.edu/etd/1311
    Sharma A., (Aug. 23, 2020). AWS v/s Google v/s Azure: Who will win the Cloud War, available at https://www.upgrad.com/blog/aws-vs-google-vs-azure/
    Teece, D. J., & Linden, G. (2017). Business models, value capture, and the digital enterprise. Journal of organization design, 6(1), 1-14.
    Todd, C., Vazquez Pena, R., & Srinivas, R. (2018). Evaluation of Artificial Intelligence Frameworks. SMU Data Science Review, 1(1), 10.
    Truck, M (2021). Red Hot: The 2021 Machine Learning, AI and Data (MAD) Landscape, available at https://mattturck.com/data2021/
    Tsai, C. F., Chen, K., Hu, Y. H., & Chen, W. K. (2020). Improving text summarization of online hotel reviews with review helpfulness and sentiment. Tourism Management, 80, 104122.
    Tsaih, R. H., & Hsu, C. C. (2018). Artificial intelligence in smart tourism: A conceptual framework. Proceedings of the 18th International Conference on Electronic Business:AI and Smart Tourism, ICEB 2018, 77-78. available at https://iceb.johogo.com/EiCompendex/Ei%20Compendex%20ICEB%202018%20list.pdf

    Tsaih, R. H., Chang, H. L., Hsu, C. C., & Chang, Y. C. (2022). AI Tech-Stack Model. Communications of the ACM, Accepted August 16 2022.
    Tsaih, R. H., Yen, D. C., & Chang, Y. C. (2015). Challenges deploying complex technologies in a traditional organization. Communications of the ACM, 58(8), 70-75.
    Tussyadiah, I., & Miller, G. (2019). Perceived impacts of artificial intelligence and responses to positive behaviour change intervention. In Information and communication technologies in tourism 2019 (pp. 359-370). Springer, Cham. available at http://doi.org/10.1007/978-3-030-05940-8_28
    Xu, M., Liu, J., Liu, Y., Lin, F. X., Liu, Y., & Liu, X. (2019, May). A first look at deep learning apps on smartphones. In The World Wide Web Conference (pp. 2125-2136).
    Yao, Q., Wang, M., Chen, Y., Dai, W., Li, Y. F., Tu, W. W., ... & Yu, Y. (2018). Taking human out of learning applications: A survey on automated machine learning. arXiv preprint arXiv:1810.13306.
    Zimmermann, H. (1980). OSI reference model-the ISO model of architecture for open systems interconnection. IEEE Transactions on communications, 28(4), 425-432.
    Description: 博士
    國立政治大學
    資訊管理學系
    105356507
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0105356507
    Data Type: thesis
    DOI: 10.6814/NCCU202201709
    Appears in Collections:[資訊管理學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    650701.pdf4401KbAdobe PDF283View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback