English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51617202      Online Users : 531
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 資訊學院 > 資訊科學系 > 期刊論文 >  Item 140.119/142229
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/142229


    Title: Leveraging Affective Hashtags for Ranking Music Recommendations
    Authors: 蔡銘峰
    Tsai, Ming-Feng
    Zangerle, Eva;Chen, Chih-Ming;Yang, Yi-Hsuan
    Contributors: 資科系
    Keywords: Emotion in music;emotion regulation;sentiment detection;ranking;music recommendation;microblogging;hashtags
    Date: 2018-06
    Issue Date: 2022-10-07
    Abstract: Mood and emotion play an important role when it comes to choosing musical tracks to listen to. In the field of music information retrieval and recommendation, emotion is considered contextual information that is hard to capture, albeit highly influential. In this study, we analyze the connection between users" emotional states and their musical choices. Particularly, we perform a large-scale study based on two data sets containing 560,000 and 90,000 #nowplaying tweets, respectively. We extract affective contextual information from hashtags contained in these tweets by applying an unsupervised sentiment dictionary approach. Subsequently, we utilize a state-of-the-art network embedding method to learn latent feature representations of users, tracks and hashtags. Based on both the affective information and the latent features, a set of eight ranking methods is proposed. We find that relying on a ranking approach that incorporates the latent representations of users and tracks allows for capturing a user`s general musical preferences well (regardless of used hashtags or affective information). However, for capturing context-specific preferences (a more complex and personal ranking task), we find that ranking strategies that rely on affective information and that leverage hashtags as context information outperform the other ranking strategies.
    Relation: IEEE Transactions on Affective Computing, 12(1), 78-91
    Data Type: article
    DOI 連結: https://doi.org/10.1109/TAFFC.2018.2846596
    DOI: 10.1109/TAFFC.2018.2846596
    Appears in Collections:[資訊科學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML2233View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback