|
English
|
正體中文
|
简体中文
|
Post-Print筆數 : 27 |
Items with full text/Total items : 113656/144643 (79%)
Visitors : 51716376
Online Users : 599
|
|
|
Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/142228
|
Title: | Item Concept Network: Towards Concept-based Item Representation Learning |
Authors: | 蔡銘峰 Tsai, Ming-Feng Wang, Ting-Hsiang;Yang, Hsiu-Wei;Chen, Chih-Ming;Wang, Chuan-Ju |
Contributors: | 資科系 |
Keywords: | Information networks;distributed representations;concept learning;network embedding;concept retrieval |
Date: | 2022-03 |
Issue Date: | 2022-10-07 |
Abstract: | Item concept modeling is commonly achieved by leveraging textual information. However, many existing models do not leverage the inferential property of concepts to capture word meanings, which therefore ignores the relatedness between correlated concepts, a phenomenon which we term conceptual “correlation sparsity.” In this paper, we distinguish between word modeling and concept modeling and propose an item concept modeling framework centering around the item concept network (ICN). ICN models and further enriches item concepts by leveraging the inferential property of concepts and thus addresses the correlation sparsity issue. Specifically, there are two stages in the proposed framework: ICN construction and embedding learning. In the first stage, we propose a generalized network construction method to build ICN, a structured network which infers expanded concepts for items via matrix operations. The second stage leverages neighborhood proximity to learn item and concept embeddings. With the proposed ICN, the resulting embedding facilitates both homogeneous and heterogeneous tasks, such as item-to-item and concept-to-item retrieval, and delivers related results which are more diverse than traditional keyword-matching-based approaches. As our experiments on two real-world datasets show, the framework encodes useful conceptual information and thus outperforms traditional methods in various item classification and retrieval tasks. |
Relation: | IEEE Transactions on Knowledge and Data Engineering, 34(3), 1258-1274 |
Data Type: | article |
DOI 連結: | https://doi.org/10.1109/TKDE.2020.2995859 |
DOI: | 10.1109/TKDE.2020.2995859 |
Appears in Collections: | [資訊科學系] 期刊論文
|
Files in This Item:
File |
Description |
Size | Format | |
index.html | | 0Kb | HTML2 | 261 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|
著作權政策宣告 Copyright Announcement1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.
2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(
nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(
nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.