English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52590578      Online Users : 663
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 資訊管理學系 > 期刊論文 >  Item 140.119/142033
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/142033


    Title: A multi-objective optimal decision model for a green closed-loop supply chain under uncertainty: A real industrial case study
    Authors: 林我聰
    Lin, W.-T.
    Fang, I.W.
    Contributors: 資管系
    Keywords: Green closed-loop supply chain;Sustainability;Modelling;Robust optimization;Mixed integer programming model;Supply chain management;Uncertainty;LP-metric method
    Date: 2021-06
    Issue Date: 2022-09-21 11:54:16 (UTC+8)
    Abstract: Green closed-loop supply chain management is an important topic for business operations today because of increasing resource scarcity and environmental issues. Companies not only have to meet environmental regulations, but also must ensure high quality supply chain operation as a means to secure competitive advantages and increase profits. This study proposes a multi-objective mixed integer programming model for an integrated green closed-loop supply chain network designed to maximize profit, amicable production level (environmentally friendly materials and clean technology usage), and quality level. A scenario-based robust optimization method is used to deal with uncertain parameters such as the demand of new products, the return rates of returned products and the sale prices of remanufactured products. The proposed model is applied to a real industry case example of a manufacturing company to illustrate the applicability of the proposed model. The result shows a robust optimal resource allocation solution that considers multiple scenarios. This study can be a reference for closed-loop supply chain related academic research and also can be used to guide the development of a green closed-loop supply chain model for better decision making.
    Relation: Advances in Production Engineering & Management, Vol.16, No.2, pp.161-172
    Data Type: article
    DOI 連結: https://doi.org/10.14743/apem2021.2.391
    DOI: 10.14743/apem2021.2.391
    Appears in Collections:[資訊管理學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML2261View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback