English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51633138      Online Users : 527
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/141612


    Title: 以廣告影像感知特徵建立智慧型分類
    Established intelligent classification based on the feature of advertising image
    Authors: 古雅琪
    Ku, Ya-Chi
    Contributors: 羅崇銘
    Lo, Chung-Ming
    古雅琪
    Ku, Ya-Chi
    Keywords: 電子商務
    商品形象
    色彩構成
    卷積神經網路
    影像分類
    E-commerce
    Product image
    Color extraction
    Convolutional neural network
    Image classification
    Date: 2022
    Issue Date: 2022-09-02 14:58:58 (UTC+8)
    Abstract: 受到時代演進、資訊技術提升以及環境改變的影響,電子商務的蓬勃發展 已成為趨勢。電子商務販售的商品眾多,因此其最大的考驗莫過於商品歸類, 而透過後設資料的描述能使商品歸類更有效率。目前電子商務商品的後設資料 多透過手動輸入及分類,需耗費大量的人力資源,若能夠以自動化分類商品便 能夠減輕成本及人力資源的負擔。本研究為建立高適用性的自動化商品分類系 統,以聯合國標準商品與服務編碼分類系統作為依據,將 momo 購物網作為研 究目標,擷取 9 大類商品影像資料集後,根據影像所傳達出商品形象的色彩構 成與卷積神經網路兩種方法建立自動化分類系統,以解決在商品多樣化的電子 商務下,人工分類的負擔與可能的失誤。結果顯示,雖然企業會根據消費者認 知設計商品的色彩,但利用色彩構成分類 9 類商品圖的最高準確率為 46.50%; 利用卷積神經網路可以達到最高準確率為 83.11%,兩者相較之下利用卷積神經 網路能夠更好地建立自動化商品分類,可以做為電子商務平台上自動化商品分 類的系統技術,讓商品歸類更有效率。
    Over recent years, e-commerce become more and more popular with the development of information technology and the environment. E-commerce offers numerous products, and its biggest challenge is how to classify product categories precisely and efficiently with metadata. Currently e-commerce lunches and classify metadata manually, which consumes lots of labor cost, classifying products automatically can decrease both cost and mistakes of manual classification. In this paper, we narrowed the dataset down to 9 categories, by using UNSPSC classification systems as standard to classify products from “momo”, hoping that we can automatically classify categories based on the color extraction and convolutional neural network from product image. Although enterprises will design the color of products according to customer’s perceptions, our results indicate that the accuracy rate of convolutional neural network is 83.11% higher than color extraction 46.50%, which means using convolutional neural network can establish intelligent classification better.
    Reference: 未來流通研究所(2020)。【商業數據圖解】2020 台灣「零售&電商」產業市佔 率英雄榜。檢自: https://www.mirai.com.tw/2020-taiwan-retail-ec-market- share-analysis/
    富邦媒體科技股份有限公司 (2021)。 關於我們。檢自: https://www.fmt.com.tw/about/aboutmomo/
    經濟部統計處 (2021)。 「宅經濟」發酵,帶動網路銷售額成長。 檢自: https://www.moea.gov.tw/Mns/dos/bulletin/Bulletin.aspx?kind=9&html=1&m enu_id=18808&bull_id=7590
    Alrumiah, S. S., & Hadwan, M. (2021). Implementing big data analytics in e- commerce: Vendor and customer view. IEEE Access, 9, 37281-37286. doi:10.1109/ACCESS.2021.3063615
    Amazon. (2021). Amazon. Retrieved from https://www.amazon.com/- /zh_TW/ref=nav_logo?currency=TWD&language=en_US
    Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS journal of photogrammetry and Remote Sensing, 114, 24-31. doi:10.1016/j.isprsjprs.2016.01.011
    Bergamaschi, S., Guerra, F., & Vincini, M. (2002). Product classification integration for e-commerce. Proceedings. 13th International Workshop on Database and Expert Systems Applications, doi:10.1109/DEXA.2002.1046004
    Biers, K., & Richards, L. (2005). Color as a factor of product choice in e-commerce. Review of Business Information Systems (RBIS), 9(4), 33-40.
    Bora, D. J., Gupta, A. K., & Khan, F. A. (2015). Comparing the Performance of L* A* B* and HSV color spaces with respect to color image segmentation. arXiv preprint arXiv:1506.01472.
    Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32.
    Bureau, U. S. C. (2021). North American Industry Classification System. Retrieved from https://www.census.gov/naics/?99967
    Burney, S. A., & Tariq, H. (2014). K-means cluster analysis for image segmentation. International Journal of Computer Applications, 96(4).
    Casas, M. C., & Chinoperekweyi, J. (2019). Color psychology and its influence on consumer buying behavior: A case of apparel products. Saudi Journal of Business and Management Studies, 4(5), 441-456.
    Castelvecchi, D. (2016). Can we open the black box of AI? Nature News, 538(7623), 20.
    Garaus, M., & Halkias, G. (2020). One color fits all: product category color norms and (a)typical package colors. Review of managerial science, 14(5), 1077- 1099.
    Goswami, A., Chittar, N., & Sung, C. H. (2011). A study on the impact of product images on user clicks for online shopping. Proceedings of the 20th international conference companion on World wide web, 45-46.
    He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition, 770-778.
    Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. Proceedings of the IEEE conference on computer vision and pattern recognition, 4700-4708.
    Hwangbo, H., Kim, Y. S., & Cha, K. J. (2018). Recommendation system development for fashion retail e-commerce. Electronic Commerce Research and Applications, 28, 94-101. doi: 10.1016/j.elerap.2018.01.012
    Jha, B. K., S. G, G., & V. K, R. (2021). E-Commerce Product Image Classification using Transfer Learning. 2021 5th International Conference on Computing Methodologies and Communication (ICCMC), 904-912.
    Kale, A., & Mente, R. (2018). M-Commerce: Services and applications. Int. J. Adv. Sci. Res, 3(1), 19-21.
    Khanuja, R. K. (2019). Optimizing E-Commerce Product Classification Using Transfer Learning.
    Kreitler, H., & Kreitler, S. (1972). Psychology of the arts. Duke University Press,14.
    Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25, 1097-1105.
    Labrecque, L. I., & Milne, G. R. (2012). Exciting red and competent blue: the importance of color in marketing. Journal of the Academy of Marketing Science, 40(5), 711-727. doi:10.1007/s11747-010-0245-y
    Lane, R. (1991). Does orange mean cheap? Forbes, 148(14), 144.
    Lauren, I. L., & George, R. M. (2013). To be or not to be different: Exploration of norms and benefits of color differentiation in the marketplace. Marketing letters, 24(2), 165-176. doi:10.1007/s11002-012-9210-5
    LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.
    Li, G., & Li, N. (2019). Customs classification for cross-border e-commerce based on text-image adaptive convolutional neural network. Electronic Commerce Research, 19(4), 779-800. doi:10.1007/s10660-019-09334-x
    Liu, T., Wang, R., Chen, J., Han, S., & Yang, J. (2018). Fine-grained classification of product images based on convolutional neural networks. Advances in 53 Molecular Imaging, 8(04), 69.
    MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. Berkeley symposium on mathematical statistics and probability, 281-297.
    Maier, E., & Dost, F. (2018). The positive effect of contextual image backgrounds on fluency and liking. Journal of Retailing and Consumer Services, 40, 109-116. doi:10.1016/j.jretconser.2017.09.003
    Majid, E. S. A., Kamaruddin, N., & Mansor, Z. (2015, 10-11 Aug. 2015). Adaptation of usability principles in responsive web design technique for e-commerce development. 2015 International Conference on Electrical Engineering and Informatics (ICEEI), 726-729.
    McAfee, A., Brynjolfsson, E., Davenport, T. H., Patil, D., & Barton, D. (2012). Big data: the management revolution. Harvard business review, 90(10), 60-68.
    Morton, J. (2021). Why Color Matters. Retrieved from https://www.colorcom.com/research/why-color-matters
    Nakwaski, M., & Zabierowski, W. (2010, 23-27 Feb. 2010). Content management system for web portal. 2010 International Conference on Modern Problems of Radio Engineering, Telecommunications and Computer Science (TCSET), 233-235.
    Narkhede, P. R., & Gokhale, A. V. (2015). Color image segmentation using edge detection and seeded region growing approach for CIELab and HSV color spaces. 2015 International Conference on Industrial Instrumentation and Control (ICIC), 1214-1218.
    Oyewole, S., & Olugbara, O. (2018). Product image classification using Eigen Colour feature with ensemble machine learning. Egyptian Informatics Journal, 19(2), 83-100. doi: 10.1016/j.eij.2017.10.002
    Pantelimon, F.-V., Georgescu, T. M., & Posedaru, B. Ş. (2020). The impact of mobile e-commerce on gdp: A comparative analysis between romania and germany and how covid-19 influences the e-commerce activity worldwide. Informatica Economica, 24(2), 27-41. doi:10.24818/issn14531305/24.2.2020.03
    Priluck Grossman, R., & Wisenblit, J. Z. (1999). What we know about consumers` color choices. Journal of marketing practice : Applied marketing science, 5(3), 78-88. doi:10.1108/EUM0000000004565
    Refaeilzadeh, P., Tang, L., & Liu, H. (2016). Cross-Validation. In L. Liu & M. T. Özsu (Eds.), Encyclopedia of Database Systems, 1-7. Springer New York. doi:10.1007/978-1-4899-7993-3_565-2
    Rothen, N., Seth, A. K., Witzel, C., & Ward, J. (2013). Diagnosing synaesthesia with online colour pickers: maximising sensitivity and specificity. Journal of neuroscience methods, 215(1), 156-160. doi:10.1016/j.jneumeth.2013.02.009
    Salih, A. A., Zeebaree, S., Abdulraheem, A. S., Zebari, R. R., Sadeeq, M., & Ahmed, O. M. (2020). Evolution of mobile wireless communication to 5G revolution. Technology Reports of Kansai University, 62(5), 2139-2151.
    Schulten, E., Akkermans, H., Botquin, G., Dörr, M., Guarino, N., Lopes, N., & Sadeh, N. (2001). The e-commerce product classification challenge. IEEE Intelligent systems, 16(4), 86-89.
    ScrapeHero. (2021). How Many Products Does Amazon Sell? Retrieved from : https://www.scrapehero.com/how-many-products-does-amazon-sell-march- 2021/
    Singh, M. (2002). E‐services and their role in B2C e‐commerce. Managing Service Quality: An International Journal, 12(6), 434-446. doi:10.1108/09604520210451911
    Singh, S. R., & Kohli, S. (2015). Enhanced CBIR using color moments, HSV histogram, color auto correlogram, and gabor texture. International Journal of Computer Systems, 2(5), 161-165.
    Statista. (2021a). Retail e-commerce sales worldwide from 2014 to 2024. Retrived from https://www.statista.com/statistics/379046/worldwide-retail-e-commerce sales/#statisticContainer
    Statista. (2021b). Retail m-commerce sales via smartphone in the United States from 2018 to 2024. Retrived from https://www.statista.com/statistics/276636/smartphones-us-retail-m- commerce-sales/
    Stricker, M. A., & Orengo, M. (1995). Similarity of color images. Storage and retrieval for image and video databases III (SPiE), 2420, 381-392.
    Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. Proceedings of the IEEE conference on computer vision and pattern recognition, 1-9.
    Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. Proceedings of the IEEE conference on computer vision and pattern recognition, 2818-2826.
    Trent, L. (1993). Color can affect success of products. Marketing news, 27(4). UNSPSC. (2021). Retrieved from https://www.unspsc.org/
    You, W.T., Sun, L.Y., Yang, Z.Y., & Yang, C.Y. (2019). Automatic advertising image color design incorporating a visual color analyzer. Journal of Computer Languages, 55, 100910. doi: 10.1016/j.cola.2019.100910
    Zahavy, T., Magnani, A., Krishnan, A., & Mannor, S. (2016). Is a picture worth a thousand words? a deep multi-modal fusion architecture for product classification in e-commerce. arXiv preprint arXiv:1611.09534.
    Description: 碩士
    國立政治大學
    圖書資訊與檔案學研究所
    109155006
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0109155006
    Data Type: thesis
    DOI: 10.6814/NCCU202201196
    Appears in Collections:[圖書資訊與檔案學研究所] 學位論文

    Files in This Item:

    File Description SizeFormat
    500601.pdf4911KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback