Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/141339
|
Title: | 運算思維研究熱點與前沿之可視化分析 Visualization Analysis of Research Hotspots and Fronts of Computational Thinking |
Authors: | 剛慶嚴 KANG, CHING-YEN |
Contributors: | 郭昭佑 陳景花 GUO, ZHAO-YOU CHEN, JING-HUA 剛慶嚴 KANG, CHING-YEN |
Keywords: | 運算思維 可視化分析 CiteSpace 知識基礎 研究熱點 研究前沿 computational thinking visual analytics CiteSpace knowledge base research hotspot research front |
Date: | 2022 |
Issue Date: | 2022-08-01 18:47:36 (UTC+8) |
Abstract: | 「工業4.0時代,已是物聯網與機器人的天下」運算思維相關研究發展至今已有數年,資訊科技的演進日新月異,幾乎人人皆有智慧型手機的現代,數位產品發展與相關新興議題仍舊不停地推陳出新;以至於現今教育所教導之知識內容,當學生畢業踏出校園而擁抱世界之後,其所習得之學識涵養是否依然學以致用?教育方向需要大刀闊斧改革,因為面臨多變的未來,每個人應具備哪些關鍵的能力?方是教育百年大計,目標嚮往之所在。 本研究採用Scopus索引摘要資料庫做為引用文獻資料來源,以「education AND "computational thinking" AND ( method or skill )」進行檢索,資料類型限縮「會議論文(Conference Paper)」與「期刊論文(Article)」,不限年份於「主題(topic)」欄位(檢索範圍包含標題、摘要、關鍵詞)進行檢索,獲得文獻數量總計1,610篇。將資料匯入CiteSpace運算繪製文獻共被引視圖,探索運算思維研究之知識基礎;以關鍵詞共現及聚類圖譜挖掘研究熱點;以關鍵詞共現時區視圖分析運算思維研究之演進脈絡;最後採突發性探測方法,取得高突發性文獻和高突現性關鍵詞,揭開運算思維之研究前沿。 研究結果發現,運算思維研究文獻同時擁有高頻次、高中介中心性與Sigma值之作者代表為:Grover(2013)、Lye(2014)、Shute(2017);文獻共被引分析13個有效聚類包括:「可擴展的遊戲設計」、「師資培育」、「初級區塊編程」、「運算思維」、「數學教學」、「增強運算思維」、「學習進程」、「擴大參與」、「計算機科學IEEE計算機協會」、「專題網站」、「高中學生」、「新一代科學標準」與「程式設計課程」為運算思維研究領域文獻之知識基礎。 高頻次及高中心性之關鍵詞:「運算思維」、「學生」、「教育」、「工程教育」、「計算機程式設計」以及「問題解決」;關鍵詞共現分析十一個有效聚類包含:「計算機科學」、「運算思維」、「教育機器人」、「教育」、「計算生物學」、「計算機教育」、「程式設計」、「學生」、「傾向分數」、「計算機程式設計」以及「K12教育」為研究熱點。 Shute, Sun和Asbell-Clarke(2017)探討教育中不斷發展的運算思維領域之研究文獻至今仍持續突現,為研究前沿之一;「小學教育」、「學習系統」與「STEM教育」三個關鍵詞突現期延續至今,即為本研究領域之研究前沿。 “The Internet of Things and robots dominate the era of Industry 4.0.” R&Ds with respect to computational thinking has been conducted for several years. As evolution of information technology receive great leaps in progress, almost everyone has a smartphone nowadays, and the development of digital products and related emerging issues surface every now and then; this hence has aroused a question, “can the students apply the knowledge and cultivation they have acquired under the modern education in their career when the graduate and step out of the campus to embrace the world?” The orientation of education require radical reformation since the key capabilities that everyone should possess remain unpredictable in the face of a volatile future, and such orientation shall be the goal to yearn for in the fundamental tasks to realize education for the generations to come. This study adopts the Scopus index abstract database as the source of citation and reference, at which a total of 1,610 articles have been found in searches of “education AND ‘computational thinking’ AND ( method or skill )” via “topic” field (the search scope includes title, abstract, and keywords), applied with filters including data types limited to “Conference Paper” and “Article” at all years. The data found are imported to CiteSpace for computing and drawing a document co-citation view to explore the knowledge base of computational thinking researches, followed by discovery of research hotspots with keyword co-occurrence and clustering graphs as well as analysis on the evolution of computational thinking researches with keyword co-occurrence time zone view before the final employment of emergent detection to obtain highly emergent literature and keywords so as to uncover the research front of computational thinking. The study results indicate that the research literature on computational thinking with high frequency, high betweenness centrality and Sigma value are the ones from authors Grover(2013), Lye(2014), and Shute(2017). The 13 effective clusters for co-citation analysis of literatures include “scalable game design”, “teacher education”, “introductory block-based programming”, “computational thinking”, “teaching mathematics”, “enhancing computational thinking”, “learning progression”, “broadening participation”, “computer science ieee computer”, “project website”, “high school student”, “next generation science standard” and “programming course” as the knowledge bases for literature in the field of computational thinking researches. Keywords with high frequency and high centrality include “computational thinking”, “student”, “education”, “engineering education”, “computer programming” and “problem solving”; the 11 effective clusters of keyword co-occurrence analysis are “computer science”, “computational thinking”, “educational robotics”, “education”, “computational biology”, “computing education”, “programming”, “student”, “propensity score”, “computer programming” and “k12” education”, which serve as research hotspots. The research literature on the evolving field of computational thinking in education by Shute, Sun and Asbell-Clarke (2017) continues to emerge and is one of the research fronts; three keywords “elementary education”, “learning system” and “stem education” contain the emergence period proceeding to this date and are the research fronts of this research field. |
Reference: | 王妍(2020).我國金融風險領域研究進展與文獻質量影響探析--文獻計量視角的社會網絡分析.上海外國語大學。 方瑀紳、李隆盛(2014).臺灣科技教育學系變革下學位論文研究趨勢:以共詞分析.教育研究集刊,60(4),99-136。 肖明(2017).圖書館學情報學知識圖譜研究:理論、方法與應用.中國書籍。 李杰(2015).安全科學知識圖譜導論.化學工業。 李杰(2018).科學知識圖譜原理及應用-VOSviewer和CitNetExplorer初學者指南.高等教育。 李杰、陳超美(2017).CiteSpace:科技文本挖掘及可視化(第二版).首都經濟貿易大學。 邱均平、馬瑞敏、李曄君(2008).關於共被引分析方法的再認識和再思考.情報雜誌,27(1),69-74。 岳曉旭、袁軍鵬、高繼平、翟麗華、潘雲濤(2014).常用科學知識圖譜工具實例對比.數字圖書館論壇,5,66-72。 胡昭民(2018).運算思維與演算法的九堂精選課程.博碩文化。 侯海燕(2006).基於知識圖譜的科學計量學進展研究.大連理工大學。 梁秀娟(2009).科學知識圖譜研究綜述.圖書館雜誌,6,58-62。 陳悅、陳超美、胡志剛、王賢文(2014).引文空間分析原理與應用.科學。 陳愉婷(2020).運算思維教學策略對國小四年級學生數學學習成就及問題解決態度之影響﹝未發表的碩士論文﹞.國立臺南大學。 教育部(2014).十二年國民教育課程綱要-總綱(2014年11月)。 教育部(2016).2016-2020資訊教育總藍圖(2016年5月)。 教育部(2017).十二年國民基本教育課程綱要–科技領域。https://cirn.moe.edu.tw/ 張春興(2007).教育心理學:三化取向的理論與實踐.臺灣東華。 張嘉彬(2016).從研究方法角度探討研究前沿.大學圖書館,20(1),88-112。 通識再現(2020).「運算思維」是否能成為教育主軸?.《點教育》,2(2),7-12。 劉軍(2014).整體網分析—UCINET軟件實用指南(第二版)。上海人民。 劉映朕(2014).社會網絡視角下企業非正式組織.商業時代,30,85-86。 劉則淵(2008).科學知識圖譜方法與應用.人民出版社。 鍾偉金、李佳(2008).共詞分析法研究(一)─共詞分析的過程與方式.情報雜誌,5。 Aho, A. V. (2012). Computation and computational thinking. The computer journal, 55(7), 832-835. Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., & Zagami, J. (2016). A K-6 computational thinking curriculum framework: Implications for teacher knowledge. Journal of Educational Technology & Society, 19(3), 47-57. Astrachan, O., Hambrusch, S., Peckham, J., & Settle, A. (2009). The present and future of computational thinking. ACM SIGCSE Bulletin, 41(1), 549-550. Åström, F. (2007). Changes in the LIS research front: Time-sliced cocitation analyses ofLIS journal articles, 1990-2004. Journal of the American Society for Information Science and Technology, 58(7), 947-957. https://doi.org/10.1002/asi.20567 Atmatzidou, S., & Demetriadis, S. (2016). Advancing students’ computational thinking skills through educational robotics: A study on age and gender relevant differences. Robotics and Autonomous Systems, 75, 661-670. Ausiku, M., & Matthee, M. (2020). Preparing Primary School Teachers for Teaching Computational Thinking: A Systematic Review. Learning Technologies and Systems, 202-213. Barr, V., & Stephenson, C. (2011). Bringing Computational Thinking to K-12:What is Involved and What is the Role of the Computer Science Education Community? ACM Inroads, 2(1), 48-54. Belcaid, M., & Toonen, R. J. (2015). Demystifying computer science for molecular ecologists. Molecular Ecology, 24(11), 2619-2640. Bell, T., Alexander, J., Freeman, I., & Grimley, M. (2009). Computer science unplugged: School students doing real computing without computers. The New Zealand Journal of Applied Computing and Information Technology, 13(1), 20-29. Bers, M. U., Flannery, L., Kazakoff, E. R. & Sullivan, A. (2014). Computational thinking and tinkering: Exploration of an early childhood robotics curriculum. Computers & Education, 72, 145-157. Bers, M. U., González-González, C., & Armas–Torres, M. B. (2019). Coding as a playground: Promoting positive learning experiences in childhood classrooms. Computers & Education, 138, 130-145. Blum, L., & Cortina, T. J. (2007). CS4HS: an outreach program for high school CS teachers. ACM SIGCSE Bulletin, 39(1), 19-23. Boe, B., Hill, C., Len, M., Dreschler, G., Conrad, P., & Franklin, D. (2013, March). Hairball: Lint-inspired static analysis of scratch projects. In Proceeding of the 44th ACM technical symposium on Computer science education (pp. 215-220). Brennan, K., & Resnick, M. (2012, April). New frameworks for studying and assessing the development of computational thinking. In Proceedings of the 2012 annual meeting of the American educational research association, Vancouver, Canada (Vol. 1, p. 25). Brookshear, J. G. (1991). Computer science: An overview. Benjamin-Cummings Publishing Co., Inc.. Buffum, P. S., Frankosky, M., Boyer, K. E., Wiebe, E., Mott, B., & Lester, J. (2015, August). Leveraging collaboration to improve gender equity in a game-based learning environment for middle school computer science. In 2015 research in equity and sustained participation in engineering, computing, and technology (RESPECT) (pp. 1-8). IEEE. Burke, Q. (2012). The markings of a new pencil: Introducing programming-as-writing in the middle school classroom. Journal of Media Literacy Education, 4(2), 121-135. Chen, C. (2006). CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for information Science and Technology, 57(3), 359-377. Chen, C., Hu, Z., Liu, S., & Tseng, H. (2012). Emerging trends in regenerative medicine: a scientometric analysis in CiteSpace. Expert opinion on biological therapy, 12(5), 593-608. Cuny, J., Snyder, L., Wing, J.M., (2010). Demystifying computational thinking for non-computer scientists. https://www.cs.cmu.edu/∼CompThink/resources/TheLinkWing.pdf. Dagienė, V., & Sentance, S. (2016, October). It’s computational thinking! Bebras tasks in the curriculum. In International conference on informatics in schools: Situation, evolution, and perspectives (pp. 28-39). Springer, Cham. Denner, J., Werner, L., & Ortiz, E. (2012). Computer games created by middle school girls: Can they be used to measure understanding of computer science concepts?. Computers & Education, 58(1), 240-249. Denning, P. J., & McGettrick, A. (2005). Recentering computer science. Communications of the ACM, 48(11), 15-19. Derek J. de Solla Price (1965). Networks of scientific papers. Science, 149(3683), 510-515. De Souza, A. A., Barcelos, T. S., Munoz, R., Villarroel, R., & Silva, L. A. (2019). Data mining framework to analyze the evolution of computational thinking skills in game building workshops. IEEE Access, 7, 82848-82866. Diane E. Papalia, Sally Wendkos Olds, & Ruth Duskin Feldman(1978).人類發展:兒童心理學(張慧芝).桂冠。(原著出版於1978) Djurdjevic-Pahl, A., Pahl, C., Fronza, I., & Ioini, N. E. (2016, October). A pathway into computational thinking in primary schools. In International symposium on emerging technologies for education (pp. 165-175). Springer, Cham. Dodero, J. M., Mota, J. M., & Ruiz-Rube, I. (2017, October). Bringing computational thinking to teachers` training: a workshop review. In Proceedings of the 5th International Conference on Technological Ecosystems for Enhancing Multiculturality (pp. 1-6). Dong, Y., Cateté, V., Lytle, N., Isvik, A., Barnes, T., Jocius, R., ... & Andrews, A. (2019, July). Infusing computing: Analyzing teacher programming products in k-12 computational thinking professional development. In Proceedings of the 2019 ACM Conference on Innovation and Technology in Computer Science Education (pp. 278-284). Falkner, K., Vivian, R., & Falkner, N. (2014, January). The Australian digital technologies curriculum: challenge and opportunity. In Proceedings of the Sixteenth Australasian Computing Education Conference-Volume 148 (pp. 3-12). Freeman, L.C. (1979). Centrality in Social Networks Conceptual Clarification. Social Networks, 1, 215-239. Goldberg, D. S., Grunwald, D., Lewis, C., Feld, J. A., & Hug, S. (2012, July). Engaging computer science in traditional education: the ECSITE project. In Proceedings of the 17th ACM annual conference on Innovation and technology in computer science education (pp. 351-356). Gouws, L. A., Bradshaw, K., & Wentworth, P. (2013, July). Computational thinking in educational activities: an evaluation of the educational game light-bot. In Proceedings of the 18th ACM conference on Innovation and technology in computer science education (pp. 10-15). Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field. Educational researcher, 42(1), 38-43. Grover, S., Pea, R., & Cooper, S. (2015). Designing for deeper learning in a blended computer science course for middle school students. Computer science education, 25(2), 199-237. Grover, S., & Basu, S. (2017, March). Measuring student learning in introductory block-based programming: Examining misconceptions of loops, variables, and boolean logic. In Proceedings of the 2017 ACM SIGCSE technical symposium on computer science education (pp. 267-272). Grover, S. (2018). The 5th ‘C’ of 21st Century Skills? Try Computational Thinking (Not Coding). https://www.edsurge.com/news/2018-02-25-the-5th-c-of-21st-century-skills-try-computational-thinking-not-coding Hsu, T. C., Chang, S. C., & Hung, Y. T. (2018). How to learn and how to teach computational thinking: Suggestions based on a review of the literature. Computers & Education, 126, 296-310. Israel, M., Pearson, J. N., Tapia, T., Wherfel, Q. M., & Reese, G. (2015). Supporting all learners in school-wide computational thinking: A cross-case qualitative analysis. Computers & Education, 82, 263-279. Kite, V., Park, S., & Wiebe, E. (2021). The code-centric nature of computational thinking education: A review of trends and issues in computational thinking education research. Sage Open, 11(2), 21582440211016418. Kong, S. C., & Lao, A. C. C. (2019, February). Assessing in-service teachers` development of computational thinking practices in teacher development courses. In Proceedings of the 50th ACM technical symposium on computer science education (pp. 976-982). Kurilovas, E., & Dagiene, V. (2016). Computational thinking skills and adaptation quality of virtual learning environments for learning informatics. International Journal of Engineering Education, 32(4), 1596-1603. Lamprou, A., Repenning, A., & Escherle, N. A. (2017, June). The Solothurn Project: Bringing computer science education to primary schools in Switzerland. In Proceedings of the 2017 ACM Conference on Innovation and Technology in Computer Science Education (pp. 218-223). Lee, B., & Jeong, Y. I. (2008). Mapping Korea’s national R&D domain of robot technology by using the co-word analysis. Scientometrics, 77(1), 3-19. Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., ... & Werner, L. (2011). Computational thinking for youth in practice. Acm Inroads, 2(1), 32-37. Lee, M. J., Bahmani, F., Kwan, I., LaFerte, J., Charters, P., Horvath, A., ... & Ko, A. J. (2014, July). Principles of a debugging-first puzzle game for computing education. In 2014 IEEE symposium on visual languages and human-centric computing (VL/HCC) (pp. 57-64). IEEE. Lester, C. Y. (2008, October). An innovative approach to teaching an undergraduate software engineering course. In 2008 The Third International Conference on Software Engineering Advances (pp. 301-306). IEEE. Li, Q. (2021). Computational thinking and teacher education: An expert interview study. Human Behavior and Emerging Technologies, 3(2), 324-338. Li, X., Ma, E., & Qu, H. (2017). Knowledge mapping of hospitality research− A visual analysis using CiteSpace. International Journal of Hospitality Management, 60, 77-93. Lu, J. J., & Fletcher, G. H. (2009, March). Thinking about computational thinking. In Proceedings of the 40th ACM technical symposium on Computer science education (pp. 260-264). Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through programming: What is next for K-12?. Computers in Human Behavior, 41, 51-61. Margolis, J. (2017). Stuck in the Shallow End, updated edition: Education, Race, and Computing. MIT press. McMaster, K., Rague, B., & Anderson, N. (2010, October). Integrating mathematical thinking, abstract thinking, and computational thinking. In 2010 IEEE Frontiers in Education Conference (FIE) (pp. S3G-1). IEEE. Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2013). Learning computer science concepts with scratch. Computer Science Education, 23(3), 239-264. Miller, L. D., Soh, L. K., Chiriacescu, V., Ingraham, E., Shell, D. F., Ramsay, S., & Hazley, M. P. (2013, October). Improving learning of computational thinking using creative thinking exercises in CS-1 computer science courses. In 2013 ieee frontiers in education conference (fie) (pp. 1426-1432). IEEE. National Research Council. (2010). Report of a workshop on the scope and nature of computational thinking. National Academies Press. Özden, M. Y. (2015). Computational thinking. http://myozden.blogspot.com.tr/2015/06/computational-thinking-bilgisayarca.html Papert, S. (1996). An exploration in the space of mathematics educations. International Journal of Computers for Mathematical Learning, 1(1), 95-123. Persson, O. (1994). The Intellectual Base and Research Fronts of JASIS 1986-1990. Journal of the American Society for Information Science, 45, 31-38. Plaza, P., Sancristobal, E., Carro, G., Castro, M., & Blazquez, M. (2018, April). Scratch day to introduce robotics. In 2018 IEEE Global Engineering Education Conference (EDUCON) (pp. 208-216). IEEE. Qin, H. (2009, March). Teaching computational thinking through bioinformatics to biology students. In Proceedings of the 40th ACM technical symposium on Computer science education (pp. 188-191). Repenning, A., Basawapatna, A., & Koh, K. H. (2009, May). Making university education more like middle school computer club: facilitating the flow of inspiration. In Proceedings of the 14th Western Canadian Conference on Computing Education (pp. 9-16). Repenning, A., Webb, D. C., Koh, K. H., Nickerson, H., Miller, S. B., Brand, C., ... & Repenning, N. (2015). Scalable game design: A strategy to bring systemic computer science education to schools through game design and simulation creation. ACM Transactions on Computing Education (TOCE), 15(2), 1-31. Román-González, M., Pérez-González, J. C., & Jiménez-Fernández, C. (2017). Which cognitive abilities underlie computational thinking? Criterion validity of the Computational Thinking Test. Computers in human behavior, 72, 678-691. Rubinstein, A., & Chor, B. (2014). Computational thinking in life science education. PLoS computational biology, 10(11), e1003897. Sáez-López, J. M., Román-González, M., & Vázquez-Cano, E. (2016). Visual programming languages integrated across the curriculum in elementary school: A two year case study using “Scratch” in five schools. Computers & Education, 97, 129-141. Salac, J., Thomas, C., Butler, C., Sanchez, A., & Franklin, D. (2020, February). TIPP&SEE: A Learning Strategy to Guide Students through Use-Modify Scratch Activities. In Proceedings of the 51st ACM Technical Symposium on Computer Science Education (pp. 79-85). Seehorn, D., Carey, S., Fuschetto, B., Lee, I., Moix, D., O`Grady-Cunniff, D., ... & Verno, A. (2011). CSTA K--12 Computer Science Standards: Revised 2011. ACM. Selby, C. C. (2014). How can the teaching of programming be used to enhance computational thinking skills? (Doctoral dissertation).University of Southampton,Southampton,UK. Selby, C., & Woollard, J. (2010). Computational thinking: The developing definition. University of Southampton. Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013). Integrating computational thinking with K-12 science education using agent-based computation: A theoretical framework. Education and Information Technologies, 18(2), 351-380. Shute, V. J., Sun, C. & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research Review, 22(1), 142-158. Small, H. (1980). Co‐citation context analysis and the structure of paradigms. Journal of documentation, 36(3), 183-196. Small, H., & Griffith, B.C. (1974). The structure of scientific literatures I: Identifying and graphing specialties. Science Studies, 4(1), 17-40. Sung, W., Ahn, J., & Black, J. B. (2017). Introducing computational thinking to young learners: Practicing computational perspectives through embodiment in mathematics education. Technology, Knowledge and Learning, 22(3), 443-463. Sysło, M. M., & Kwiatkowska, A. B. (2008, July). The challenging face of informatics education in Poland. In International conference on Informatics in Secondary Schools-evolution and Perspectives (pp. 1-18). Springer, Berlin, Heidelberg. Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing computational thinking: A systematic review of empirical studies. Computers & Education, 148, 103798. Torres-Torres, Y. D., Román-González, M., & Pérez-González, J. C. (2019, October). Implementation of unplugged teaching activities to foster computational thinking skills in primary school from a gender perspective. In Proceedings of the Seventh International Conference on Technological Ecosystems for Enhancing Multiculturality (pp. 209-215). Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A. (2015). Computational thinking in compulsory education: Towards an agenda for research and practice. Education and Information Technologies, 20(4), 715-728. Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining computational thinking for mathematics and science classrooms. Journal of Science Education and Technology, 25(1), 127-147. Werner, L., Denner, J., Campe, S., & Kawamoto, D. C. (2012, February). The fairy performance assessment: Measuring computational thinking in middle school. In Proceedings of the 43rd ACM technical symposium on Computer Science Education (pp. 215-220). Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35. Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the Royal Society A,366,3717-3725. https://doi.org/10.1098/rsta.2008.0118 Wolz, U., Stone, M., Pearson, K., Pulimood, S. M., & Switzer, M. (2011). Computational thinking and expository writing in the middle school. ACM Transactions on Computing Education (TOCE), 11(2), 1-22. Wong, G. K., Cheung, H. Y., Ching, E. C., & Huen, J. M. (2015, December). School perceptions of coding education in K-12: A large scale quantitative study to inform innovative practices. In 2015 IEEE international conference on teaching, Assessment, and learning for engineering (TALE) (pp. 5-10). IEEE. Wu, M. L., & Richards, K. (2011, September). Facilitating computational thinking through game design. In International Conference on Technologies for E-Learning and Digital Entertainment (pp. 220-227). Springer, Berlin, Heidelberg. Yadav, A., Hong, H., & Stephenson, C. (2016). Computational thinking for all: Pedagogical approaches to embedding 21st century problem solving in K-12 classrooms. TechTrends, 60(6), 565-568. Yadav, A., Zhou, N., Mayfield, C., Hambrusch, S., & Korb, J. T. (2011, March). Introducing computational thinking in education courses. In Proceedings of the 42nd ACM technical symposium on Computer science education (pp. 465-470). Yeh, K. C., Xie, Y., & Ke, F. (2011, October). Teaching computational thinking to non-computing majors using spreadsheet functions. In 2011 Frontiers in Education Conference (FIE) (pp. F3J-1). IEEE. Zhang, L., & Nouri, J. (2019). A systematic review of learning computational thinking through Scratch in K-9. Computers & Education, 141, 103607. Zur Bargury, I. (2012, July). A new curriculum for junior-high in computer science. In Proceedings of the 17th ACM annual conference on Innovation and technology in computer science education (pp. 204-208). |
Description: | 碩士 國立政治大學 學校行政碩士在職專班 107911006 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0107911006 |
Data Type: | thesis |
DOI: | 10.6814/NCCU202201019 |
Appears in Collections: | [學校行政碩士在職專班] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
100601.pdf | | 5634Kb | Adobe PDF2 | 153 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|