English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114104/145136 (79%)
Visitors : 52288404      Online Users : 201
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/141180
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/141180


    Title: 應用深度學習於股票走勢分析-以台灣市場為例
    Applying Deep Learning to Predict the Trend of Stock in Taiwan
    Authors: 周家民
    Zhou, Jia-Min
    Contributors: 蔡炎龍
    Tsai, Yen-Lung
    周家民
    Zhou, Jia-Min
    Keywords: 深度學習
    神經網路
    卷積神經網路
    長短期記憶
    股票趨勢預測
    市場模擬
    Deep Learning
    NN
    CNN
    LSTM
    Stock Trend Forecast
    Market Simulation
    Date: 2022
    Issue Date: 2022-08-01 18:12:42 (UTC+8)
    Abstract: 在本篇論文中,我們使用了現有的 NN、CNN、LSTM 等模型去組合出一個更為複雜的合併模型,並使用新的前處理方法處理技術指標,透過預設的閥值或一些條件轉成新的指標。此外,還使用了一些較為新穎的技術來改善模型,例如:LeakyReLU、Nadam,讓模型更好訓練。與其他模型相比,在同樣的輸入下,合併模型大幅度優於其他的模型,也遠高於最簡單的預測方法。而加入前處理的指標後,更讓原本的合併模型以及 LSTM 模型的準確率分別提升了 4.13% 以及 8.54%。
    除了單純模型預測外,我們也提出一個簡單的策略來應用模型的預測,並預設了一個閥值來達到更好的結果。扣除掉手續費、交易稅後,最多大約可以得到 7% 的回報。
    In this paper, we use existing NN, CNN and LSTM models to combine a more complex merged model and use new preprocessing methods to handle the technical indicators, which are transformed into new indicators by pre-set thresholds or some conditions. In addition, some newer techniques are used to improve the model, such as LeakyReLU and Nadam, to make the model better trained. Compared with other models, the merged model is substantially better than other models with the same inputs and much better than the simplest prediction method. The addition of the
    preprocessing indicators also improved the accuracy of the original merged model and LSTM model by 4.13% and 8.54%, respectively.
    In addition to the pure model prediction, we also propose a simple strategy to apply the model prediction with a pre-set threshold to achieve better results. The maximum return is about 7% after deducting the handling fee and transaction tax.
    Reference: [1] Kunihiko Fukushima and Sei Miyake. Neocognitron: A self-organizing neural network model for a mechanism of visual pattern recognition. In Competition and cooperation in
    neural nets, pages 267–285. Springer, 1982.
    [2] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan RSalakhutdinov. Improving neural networks by preventing co-adaptation of feature detectors.
    arXiv preprint arXiv:1207.0580, 2012.
    [3] David H Hubel. Single unit activity in striate cortex of unrestrained cats. The Journal of physiology, 147(2):226, 1959.
    [4] David H Hubel and Torsten N Wiesel. Receptive fields of single neurones in the cat’s striate cortex. The Journal of physiology, 148(3):574, 1959.
    [5] WS McCullock and W Pitts. A logical calculus of ideas immanent in nervous activity. archive copy of 27 november 2007 on wayback machine. Avtomaty [Automated Devices] Moscow, Inostr. Lit. publ, pages 363–384, 1956.
    [6] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
    Lanctot, et al. Mastering the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.
    [7] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified activations in convolutional network. arXiv preprint arXiv:1505.00853, 2015.
    Description: 碩士
    國立政治大學
    應用數學系
    108751018
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0108751018
    Data Type: thesis
    DOI: 10.6814/NCCU202200774
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    101801.pdf1042KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback