English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52585122      Online Users : 1119
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/141179
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/141179


    Title: 具時間延遲之主從反應擴散神經網絡的有界性與同步化
    Boundedness and synchronization of master-slave reaction-diffusion neural networks with time delays
    Authors: 張又權
    Zhang, Yo-Cheng
    Contributors: 曾睿彬
    Tseng, Jui-Pin
    張又權
    Zhang, Yo-Cheng
    Keywords: 神經網絡
    主從系統
    時間延遲
    有界性
    全局同步化
    Neural network
    Master-slave system
    Time delays
    Boundedness
    Global synchronization
    Date: 2022
    Issue Date: 2022-08-01 18:12:28 (UTC+8)
    Abstract: 在本文中,我們考慮了具有時間延遲的主從反應-擴散神經網絡。我們
    考慮的網絡可以是離散型時間延遲和分布型時間延遲。我們首先建立所考慮系統的解的有界性。然後,我們進一步研究了所考慮系統的全局同步化。
    In this paper, we consider master-slave reaction-diffusion neural networks with time delays. The networks we consider can be with both discrete delays and distributed delays. We first establish the boundedness of the solutions of the considered systems. Then, we further investigate the global synchronization of the considered sysems.
    Reference: [1] J. Arrieta. On boundedness of solutions of reaction-diffusion equations with nonlinear boundary conditions. Proceedings of the American Mathematical Society, 136(1):151–160, 2008.
    [2] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.U. Hwang. Complex networks: Structure and dynamics. Physics reports, 424(4-5):175–308, 2006.
    [3] S. Dharani, R. Rakkiyappan, J.D. Cao, and A. Alsaedi. Synchronization of generalized reaction-diffusion neural networks with time-varying delays based on general integral inequalities and sampled-data control approach. Cognitive neurodynamics, 11(4):369–381, 2017.
    [4] Q.T. Gan, T.L. Liu, C. Liu, and T.S. Lv. Synchronization for a class of generalized neural networks with interval time-varying delays and reaction-diffusion terms. Nonlinear
    analysis: modelling and control, 21(3):379–399, 2016.
    [5] C. Hu, H.J. Jiang, and Z.D. Teng. Impulsive control and synchronization for delayed neural networks with reaction–diffusion terms. IEEE Transactions on Neural Networks, 21(1):
    67–81, 2009.
    [6] L.M. Pecora and T.L. Carroll. Synchronization in chaotic systems. Physical review letters, 64(8):821, 1990.
    [7] Y. Sheng, H. Zhang, and Z.G. Zeng. Synchronization of reaction–diffusion neural networks with dirichlet boundary conditions and infinite delays. IEEE transactions on cybernetics, 47(10):3005–3017, 2017.
    [8] J.P. Tseng. Global synchronization of coupled reaction–diffusion neural networks with general couplings via an iterative approach. IMA Journal of Applied Mathematics, 85(4): 635–669, 2020.
    [9] Z.G. Wu, P. Shi, H.Y. Su, and J. Chu. Exponential synchronization of neural networks with discrete and distributed delays under time-varying sampling. IEEE Transactions on Neural Networks and Learning Systems, 23(9):1368–1376, 2012.
    [10] P. Yan and T. Lv. Exponential synchronization of delayed reaction-diffusion neural networks with general boundary conditions. The Rocky Mountain Journal of Mathematics, pages 1037–1057, 2013.
    [11] X.S. Yang, J.D. Cao, and Z.C. Yang. Synchronization of coupled reaction-diffusion neural networks with time-varying delays via pinning-impulsive controller. SIAM Journal on Control and Optimization, 51(5):3486–3510, 2013.
    [12] X.S. Yang, Q. Song, J.D. Cao, and J.Q. Lu. Synchronization of coupled markovian reaction–diffusion neural networks with proportional delays via quantized control. IEEE transactions on neural networks and learning systems, 30(3):951–958, 2018.
    [13] H. Zhang, Z.G. Zeng, and Q.L. Han. Synchronization of multiple reaction–diffusion neural networks with heterogeneous and unbounded time-varying delays. IEEE Transactions on Cybernetics, 49(8):2980–2991, 2018.
    Description: 碩士
    國立政治大學
    應用數學系
    108751017
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0108751017
    Data Type: thesis
    DOI: 10.6814/NCCU202200851
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    101701.pdf466KbAdobe PDF2158View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback