English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113822/144841 (79%)
Visitors : 51822559      Online Users : 523
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/141178
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/141178


    Title: 新冠肺炎斷層掃描的小樣本機器學習研究
    Research of machine learning for small samples of covid-19 CT
    Authors: 孫照恩
    Sun, Chao-En
    Contributors: 曾正男
    Tzeng, Jeng-Nan
    孫照恩
    Sun, Chao-En
    Keywords: 機器學習
    監督式學習
    支持向量機
    新型冠狀肺炎
    影像辨識
    machine learning
    Supervised learning
    Support vector machine
    Covid-19
    Image recognition
    Date: 2022
    Issue Date: 2022-08-01 18:12:15 (UTC+8)
    Abstract: 日前的疫情日趨嚴峻,鑒於目前關於COVID-19之檢測方式大致分為核酸檢測、抗體、抗原之快篩試劑檢測,其分別有耗時高成本高、潛伏期及感染前期無法檢測、以及準確度較低容易發生偽陰偽陽之缺點,且以上採檢方式皆須要透過侵入式的採檢方式才能達到效果,不免會降低社會大眾對於採檢的意願。因此本文希望透過以肺部的電腦斷層攝影圖觀察確診者之病灶位置、形狀、規模並利用奇異值分解對原始資料的主要特徵進行提取,利用圖與圖之間的特徵值差異先進行篩選以及預處理,再利用機器學習中監督式學習的支持向量機及相關的參數設定來對確診者與健康者之間產生區別分類進而對新輸入的病人資料進行預測。透過這種方式期望達到增加檢測量能、降低成本、提高檢測意願及準確度。
    The current epidemic is becoming more and more serious, and the current testing methods for COVID-19 are broadly divided into PCR, antibodies, and antigenic rapid test, which are time-consuming and costly, undetectable during the incubation period and pre-infection period, and less accurate which are prone to false negatives and false positives.Also, all of the above methods require invasive testing to achieve results, which will inevitably reduce the public`s desire for testing. Therefore, in this paper, we hope to extract the main features of the original data by observing the location, shape, and size of the lesions of the diagnosed patients with lung computed tomography and using the singular value decomposition, and then filter and pre-process the differences of the feature values between the images. Then we use support vector machine and adjustment the parameters of the model to classify and predict whether the people is diagnosed. In this way, we expect to increase detection performance, reduce costs, and improve willingness and accuracy of detection.
    Reference: [1] S. V. Kogilavani , J. Prabhu, R. Sandhiya, M. Sandeep Kumar, UmaShankar Subramaniam, Alagar Karthick , M. Muhibbullah , and Sharmila Banu Sheik Imam(01,Feb,2022)COVID-19 Detection Based on Lung Ct Scan Using Deep Learning Techniques
    [2] Ines Chouat, Amira Echtioui, Rafik Khemakhem, Wassim Zouch, Mohamed Ghorbel & Ahmed Ben Hamida(22,January,2022)COVID-19 detection in CT and CXR images using deep learning models
    [3] COVID-CTset : A Large COVID-19 CT Scans dataset containing 63849 images from 377 patients
    [4] Implementing the "GrabCut" Segmentation Technique as a Plugin for the GIMP
    [5] 黃志勝 Chih-Sheng Huang 相關文章
    [6] (13,Feb,2019)Math behind Support Vector Machine
    [7] John C.Platt(26,Mar,1999)Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods
    [8] (19,Jan,2021)奇異值分解(SVD)演算法
    [9] 數值分析-曾正男 6-8 差值法 B spline
    [10] 李立宗(19,Oct,2019)科班出身的AI人必修課:OpenCv影像處理使用Python
    Description: 碩士
    國立政治大學
    應用數學系
    108751005
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0108751005
    Data Type: thesis
    DOI: 10.6814/NCCU202200858
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    100501.pdf7427KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback