English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51693917      Online Users : 593
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/141077


    Title: 訊號分解對於集成學習預測股價準確率之影響—以台灣加權股價指數為例
    Influence of Signal Decomposition on the Accuracy of Ensemble Learning to Predict Stock Price: Taking TAIEX as an Example
    Authors: 錢慧娟
    Chien, Hui-Chuan
    Contributors: 黃泓智
    Huang, Hong-Chih
    錢慧娟
    Chien, Hui-Chuan
    Keywords: 台灣加權股價指數
    變分模態分解
    經驗模態分解
    極限學習機
    改良式和弦搜尋優化演算法
    集成學習
    TAIEX
    Variational Mode Decomposition (VMD)
    Empirical Mode Decomposition (EMD)
    Extreme Learning Machine (ELM)
    Improved Harmony Search Algorithm (IHS)
    Ensemble Learning
    Date: 2022
    Issue Date: 2022-08-01 17:32:26 (UTC+8)
    Abstract: 股價為一高噪音、非線性和非平穩的時間序列資料,因此股價預測長期以來均是一項具有挑戰性之熱門研究。本文提出一基於變分模態分解 (Variational Mode Decomposition, VMD)和經驗模態分解 (Empirical Mode Decomposition, EMD)之二次分解技術,結合極限學習機 (Extreme Learning Machines, ELM)和改良式和弦搜尋優化演算法 (Improved Harmony Search Algorithm, IHS)之二階段混合模型,並利用此混合模型預測台灣加權股價指數之股價。本文將VMD分解技術應用於分解台灣加權股價指數之收盤價,取得多個子序列和噪音項後,再將EMD分解技術應用於分解噪音項,最後將子序列和由台灣加權股價指數衍生出之技術指標透過ELM模型得出初步預測結果,再以IHS演算法整合並優化最終結果。而為驗證模型的有效性,本文將此混合模型和單一ELM模型以及單一VMD分解技術之混合模型進行比較,並比較預測一日、三日和五日之結果。實證結果顯示,本文所提出之混合模型無論在短天期或是長天期,均具有較好的預測效果,其中二次分解技術優於一次分解技術之結果亦說明:深入分析噪音項所含之有效資訊,不僅更完善的捕捉原始序列的特徵,亦更有效地提升模型的預測能力。
    As stock data is characterized by high-noise, non-linear, and non-stationary, predicting stock price is usually subject to a main challenge. In this study, to enhance the predictive performance, we proposed a new two-stage hybrid model by combining with extreme learning machine (ELM) and improved harmony search algorithm (IHS) which based on the secondary decomposition technique of variational mode decomposition (VMD) and empirical mode decomposition (EMD), named VMD-EMD-ELM-IHS model. The hybrid model applies VMD techniques to the original closing price of TAIEX to obtain different subsequences and the residual term, then applies EMD techniques to the residual term, then predicts all subsequences and technical analysis indicators by ELM models, and then applies IHS to integrate the prediction results of ELM models to obtain the final prediction results. To verify the performance and robustness of the hybrid model, the results were compared with other models, including single ELM model, and VMD-ELM-IHS model, and respectively, tested by one-step, three-step, and five-step forward forecasting. The empirical results show that the hybrid model we proposed achieves the best prediction performance in other models and all prediction scenarios. Also, the secondary decomposition technique superior to the single decomposition technique shows that fully considering the residual term not only captures the characteristics of the original sequence but also effectively improves the prediction accuracy.
    Reference: 蜂行資本 (Hive Ventures)有限公司 (2022)。2022台灣企業AI趨勢報告。
    Ariyo, Adebiyi A., Adewumi, Adewumi O., & Ayo, Charles K. (2014). Stock price prediction using the ARIMA model. IEEE, 106–112. doi:10.1109/uksim.2014.67
    Arowolo, W. B. (2013). Predicting stock prices returns using GARCH model. The International Journal of Engineering and Science (IJES), 2(5), 32-37.
    Assad, A., & Deep, K. (2018). A hybrid harmony search and simulated annealing algorithm for continuous optimization. Information Sciences, 450, 246–266.
    Baştanlar, Y., & Özuysal, M. (2013). Introduction to Machine Learning. Methods in Molecular Biology, 105–128. doi:10.1007/978-1-62703-748-8_7
    Bisoi, R., Dash, P., & Parida, A. (2019). Hybrid Variational Mode Decomposition and evolutionary robust kernel extreme learning machine for stock price and movement prediction on daily basis. Applied Soft Computing, 74, 652–678.
    Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Computing Surveys, 35(3), 268–308.
    Brown, R. G., & Meyer, R. F. (1961). The fundamental theorem of exponential smoothing. Operations Research, 9(5), 673–685. doi: 10.1287/opre.9.5.673
    Bughin J., Seong J., Manyika J., Chui M., Joshi R. (2018, September). Notes from the AI frontier: Modeling the impact of AI on the world economy. McKinsey Global Institute.
    Cheng, C. H., & Wei, L. Y. (2014). A novel time-series model based on empirical mode decomposition for forecasting TAIEX. Economic Modelling, 36, 136–141.
    David M. Q. Nelson, Adriano C. M. Pereira, & Renato A. de Oliveira (2017). Stock market`s price movement prediction with LSTM neural networks. IEEE. doi: 10.1109/IJCNN.2017.7966019
    Dragomiretskiy, K., & Zosso D. (2014). Variational mode decomposition. IEEE Transactions on Signal Processing, 62(3), 531–544.
    Dutta, G., Jha, P., Laha, A. K., & Mohan, N. (2006). Artificial neural network models for forecasting stock price index in the Bombay stock exchange. Journal of Emerging Market Finance, 5(3), 283–295. doi: 10.1177/097265270600500305
    Gogna, A., & Tayal, A. (2013). Metaheuristics: review and application. Journal of Experimental & Theoretical Artificial Intelligence, 25(4), 503–526.
    H., Singh Rupal, Mohanty, Soumya R., Kishor, N., Singh, & Dushyant K. (2019). Comparison of empirical mode decomposition and wavelet transform for power quality assessment in FPGA. IEEE, 1–6. doi: 10.1109/PEDES.2018.8707444
    Harvey, A. (2006). Handbook of Economic Forecasting (1st ed.), 1(1). 327–412. doi:10.1016/S1574-0706(05)01007-4
    Hosni, M., Idri, A., Nassif, A., & Abran, A. (2016). Heterogeneous ensembles for software development effort estimation. IEEE, 174–178.
    Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2004). Extreme learning machine: A new learning scheme of feedforward neural networks. IEEE, 2, 985–990.
    Huang, G., Huang, G.B., Song, S., & You, K. (2015). Trends in extreme learning machines: A review. Neural Networks, 61, 32–48.
    Huang, G., Zhu, Q., & Siew, C. (2006). Extreme learning machine: Theory and applications designs. Neurocomputing, 70(1), 489–501.
    Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N. C., Tung, C. C., & Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings A, 454(1971), 903–995. doi: 10.1098/rspa.1998.0193
    Kim, K. J. (2003). Financial time series forecasting using support vector machines. Neurocomputing, 55(1-2), 307–319. doi: 10.1016/s0925-2312(03)00372-2
    Kim, T., & Kim, H. Y. (2019). Forecasting stock prices with a feature fusion LSTM-CNN model using different representations of the same data. PLOS ONE, 14(2), doi: 10.1371/journal.pone.0212320
    Lahmiri, S. (2016). Intraday stock price forecasting based on variational mode decomposition. Journal of Computational Science, 12, 23–27.
    Lazzeri, F. (2020). Machine Learning for Time Series Forecasting with Python (1st ed.). Wiley Publishers. 61-99. doi: 10.1002/9781119682394.ch3
    Moore, E.H. (1920). On the Reciprocal of the General Algebraic Matrix. Bulletin of American Mathematical Society, 26, 394-395.
    Shalabi, L., & Shaaban, Z. (2006). Normalization as a preprocessing engine for data mining and the approach of preference matrix. IEEE Computer Society, 207–214. doi: 10.1109/depcos-relcomex.2006.38
    Wang, D., Luo, H., Grunder, O., Lin, Y., & Guo, H. (2017). Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm. Applied Energy, 190, 390–407. doi: 10.1016/j.apenergy.2016.12.134
    Wang, R., Kwong, S., & Wang, Debby D. (2013). An analysis of elm approximate error based on random weight matrix. International Journal of Uncertainty, Fuzziness, and Knowledge-Based systems, 21(2), 1–12.
    Wei, L. Y. (2016). A hybrid ANFIS model based on empirical mode decomposition for stock time series forecasting. Applied Soft Computing, 42(C), 368–376.
    Zhang, X., Shi, J., Wang, D., & Fang, B. (2018). Exploiting investors social network for stock prediction in China’s market. Journal of Computational Science, 28, 294–303.
    Zou, D., Gao, L., Wu, J., Li, S., Li, Y. (2010). A novel global harmony search algorithm for reliability problems. Computers & Industrial Engineering, 58(2), 307–316.
    Description: 碩士
    國立政治大學
    風險管理與保險學系
    109358014
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0109358014
    Data Type: thesis
    DOI: 10.6814/NCCU202200961
    Appears in Collections:[風險管理與保險學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    801401.pdf8031KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback