English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52393856      Online Users : 486
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 資訊管理學系 > 學位論文 >  Item 140.119/141041
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/141041


    Title: 以硬體錢包實作以太坊相容區塊鏈之交易
    Compose Transactions for Ethereum-Compatible Blockchains Using Hardware Wallets
    Authors: 簡佑臻
    Chien, Yu-Jen
    Contributors: 陳恭
    Chen, Kung
    簡佑臻
    Chien, Yu-Jen
    Keywords: 區塊鏈
    硬體錢包
    冷錢包
    以太坊兼容鏈
    Ethereum-compatible blockchains
    Hardware wallets
    Cold wallets
    Date: 2022
    Issue Date: 2022-08-01 17:23:40 (UTC+8)
    Abstract: 近年來加密貨幣交易興起,各大知名的加密貨幣交易所,如Binance、FTX與Coinbase等,都透過提供簡易操作的加密貨幣錢包與多樣化服務,吸引加密貨幣持有者的使用,但這些便利性是透過交易所代管客戶加密貨幣的私鑰而達到的;一旦交易所遭到駭客入侵,取得其代管的客戶私鑰,將為客戶帶來重大的損失。為了防範此種問題,越來越多使用者開始採用熱錢包 (Hot wallet) 與冷錢包 (Cold wallet) ,其中以冷錢包提供的服務更具有安全保障。
    冷錢包,又稱硬體錢包,其功能是將加密貨幣帳戶的私鑰透過離線的硬體環境產生與儲存,降低其遭到駭客盜取私鑰的風險。因此,針對不同鏈的不同幣種,硬體錢包需要支援該幣種的交易格式、雜湊函數與數位簽章演算法,否則無法產出該筆交易之簽章。為加速硬體錢包支援新幣種的速度,本研究認為可以透過實作出以太坊兼容鏈的交易,提高實作效率。首先,本研究藉由庫幣科技提供之硬體錢包實作出以太坊兼容鏈的Avalanche C-Chain交易。其次,透過抽離出其與以太坊交易之相異處後,發展以太坊兼容鏈架構,據以實作出Aurora與Klaytn之交易,並比較新舊方法之流程上差異。在以太坊相容架構下,未來只需要兩個步驟就能使硬體錢包支援新鏈之交易,相較於目前的方法,可大幅縮短實作上的流程。
    The cryptocurrency trading has gone viral in recent years. Major well-known cryptocurrency exchanges, such as Binance, FTX and Coinbase, have attracted cryptocurrency holders by providing easy-to-use cryptocurrency wallets and diversified services. However, such convenient services are achieved by hosting the private key of the client’s cryptocurrency wallet. Once the exchange is hacked and breached, the hackers obtain the customers’ private keys, bringing heavy losses to the customers. In order to prevent such problems, more and more users have begun to embrace hot wallets and cold wallets, among which the latter are considered to be more secure.
    A cold wallet, also known as a hardware wallet, is a device for offline storage of private keys. It generates and stores the private keys of cryptocurrency wallets through an offline hardware environment, reducing the risk of hackers stealing the private keys. Therefore, for different currencies of different blockchains, the hardware wallet needs to support the transaction format of the currency, such as the hash function and digital signature algorithm used, otherwise the signature of the transaction cannot be generated. In order to accelerate the speed of hardware wallets supporting new currencies, this study believes that the efficiency of implementation can be improved by implementing transactions on the Ethereum-compatible chains. First of all, this study uses the hardware wallet provided by CoolBitX to implement the transactions of Avalanche C-Chain, an Ethereum-compatible chain. After extracting the differences between Avalanche C-Chain and Ethereum transactions, we develop the Ethereum compatible chain structure, according to which the transactions on Aurora and Klaytn are implemented, and the process difference between the old and new method is compared. Under the Ethereum-compatible architecture, only two steps are needed in the future to enable the hardware wallet to support transactions on the new chain. Compared with the current method, the implementation process is greatly shortened.
    Reference: Aung, Y. N., & Tantidham, T. (2017). Review of Ethereum: Smart home case study. 2017 2nd International Conference on Information Technology (INCIT),
    Ava Labs. (2021). Avalanche Blockchain Consensus. Retrieved April 6, 2022 from https://docs.avax.network/learn/platform-overview/avalanche-consensus/#dags-directed-acyclic-graphs
    Bamert, T., Decker, C., Wattenhofer, R., & Welten, S. (2014). Bluewallet: The secure bitcoin wallet. International Workshop on Security and Trust Management,
    Barber, S., Boyen, X., Shi, E., & Uzun, E. (2012). Bitter to Better — How to Make Bitcoin a Better Currency. In A. D. Keromytis, Financial Cryptography and Data Security Berlin, Heidelberg.
    Bartoletti, M., & Pompianu, L. (2017). An Empirical Analysis of Smart Contracts: Platforms, Applications, and Design Patterns. In M. Brenner, K. Rohloff, J. Bonneau, A. Miller, P. Y. A. Ryan, V. Teague, A. Bracciali, M. Sala, F. Pintore, & M. Jakobsson, Financial Cryptography and Data Security Cham.
    Bogner, A., Chanson, M., & Meeuw, A. (2016). A decentralised sharing app running a smart contract on the ethereum blockchain. Proceedings of the 6th International Conference on the Internet of Things,
    Buterin, V. (2014). A next-generation smart contract and decentralized application platform. white paper, 3(37).
    Buterin, V. (2016). EIP-155: Simple replay attack protection. Ethereum Improvement Proposals, no. 155. Retrieved May 2, 2022 from https://eips.ethereum.org/EIPS/eip-155
    Chainlist.org. (n.d.). Chainlists. Retrieved April 10, 2022 from https://chainlist.org/zh
    Charoenwong, B., & Bernardi, M. (2022). A Decade of Cryptocurrency ‘Hacks’: 2011 – 2021. Available at SSRN: https://ssrn.com/abstract=3944435 or http://dx.doi.org/10.2139/ssrn.3944435
    Defi Llama. (n.d.). Total Value Locked All Chains. Retrieved March 20, 2022 from https://defillama.com/chains
    Ethereum Wiki. (n.d.). RLP. Retrieved April 9, 2022 from https://eth.wiki/fundamentals/rlp
    Gentilal, M., Martins, P., & Sousa, L. (2017). TrustZone-backed bitcoin wallet. Proceedings of the Fourth Workshop on Cryptography and Security in Computing Systems,
    Hiltgen, A., Kramp, T., & Weigold, T. (2006). Secure internet banking authentication. IEEE security & privacy, 4(2), 21-29.
    Jakobsson, M., & Juels, A. (1999). Proofs of work and bread pudding protocols. In Secure information networks (pp. 258-272). Springer.
    Lamport, L., Shostak, R., & Pease, M. (2019). The Byzantine generals problem. In Concurrency: the Works of Leslie Lamport (pp. 203-226).
    Lazarenko, A., & Avdoshin, S. (2019). Financial Risks of the Blockchain Industry: A Survey of Cyberattacks. In K. Arai, R. Bhatia, & S. Kapoor, Proceedings of the Future Technologies Conference (FTC) 2018 Cham.
    Lim, I.-K., Kim, Y.-H., Lee, J.-G., Lee, J.-P., Nam-Gung, H., & Lee, J.-K. (2014). The analysis and countermeasures on security breach of bitcoin. International conference on computational science and its applications,
    McCorry, P., Möser, M., & Ali, S. T. (2018). Why Preventing a Cryptocurrency Exchange Heist Isn’t Good Enough. In V. Matyáš, P. Švenda, F. Stajano, B. Christianson, & J. Anderson, Security Protocols XXVI Cham.
    Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Decentralized Business Review, 21260.
    Palatinus, M., & Rusnak, P. (2014). Multi-Account Hierarchy for Deterministic Wallets. Retrieved Jun 10, 2022 from https://github.com/bitcoin/bips/blob/master/bip-0044.mediawiki
    Poulsen, K. (2011). New Malware Steals Your Bitcoin. Retrieved March 20, 2022 from https://www.wired.com/2011/06/bitcoin-malware/
    Rezaeighaleh, H., & Zou, C. C. (2020). Efficient Off-Chain Transaction to Avoid Inaccessible Coins in Cryptocurrencies. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom),
    Rusnak, P., & Palatinus, M. (2014). SLIP-0044 : Registered coin types for BIP-0044. Retrieved May 23, 2022 from https://github.com/satoshilabs/slips/blob/master/slip-0044.md
    Szabo, N. (1997). Formalizing and securing relationships on public networks. First monday.
    TheBlockCrypto. (2022). Cryptocurrency Exchange Volume. Retrieved March 20, 2022 from https://www.theblockcrypto.com/data/crypto-markets/spot/cryptocurrency-exchange-volume-monthly
    Tidy, J. (2021). 數字貨幣市場上遭黑客攻擊的受害者. Retrieved May 23, 2022 from https://www.bbc.com/zhongwen/trad/business-58341055
    Vogelsteller, F., & Buterin, V. (2015). EIP-20: Token Standard. Retrieved May 10, 2022 from https://eips.ethereum.org/EIPS/eip-20
    Wood, G. (2022). ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER. Retrieved May 29, 2022 from https://ethereum.github.io/yellowpaper/paper.pdf
    Wuille, P. (2012). Hierarchical Deterministic Wallets. Retrieved June 10, 2022 from https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
    Yavuz, E., Koç, A. K., Çabuk, U. C., & Dalkılıç, G. (2018). Towards secure e-voting using ethereum blockchain. 2018 6th International Symposium on Digital Forensic and Security (ISDFS),
    Description: 碩士
    國立政治大學
    資訊管理學系
    109356032
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0109356032
    Data Type: thesis
    DOI: 10.6814/NCCU202201030
    Appears in Collections:[資訊管理學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    603201.pdf6347KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback