政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/140664
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114012/145044 (79%)
Visitors : 52093313      Online Users : 479
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/140664


    Title: 互動式主題標籤推薦系統
    Interactive hashtag recommendation system
    Authors: 林俊廷
    Lin, Chun-Ting
    Contributors: 李蔡彥
    Li, Tsai-Yen
    林俊廷
    Lin, Chun-Ting
    Keywords: 推薦系統
    自然語言處理
    社群媒體
    主題標籤
    Recommendation system
    Natural language processing
    Social media
    Hashtag
    Date: 2022
    Issue Date: 2022-07-01 16:21:47 (UTC+8)
    Abstract: 隨著網絡的不斷發展,越來越多的使用者將自己的所見所聞,透過推文(Tweet)的形式分享在社群媒體(Social Media)之中。這些推文以主題標籤(Hashtag)為聯結,在社群媒體中構成了許許多多的討論主題(Topic)。但由於大多數的使用者都沒有使用主題標籤的習慣,導致大量的推文無法被即時歸類到對應的主題,使得資訊呈現出離散的狀態。為了解決上述問題,本文提出了一種互動式主題標籤推薦系統,預測使用者所發推文的主題,以互動的方式推薦相關的主題標籤。此推薦系統可根據使用者的互動反饋,在編寫推文的不同階段提供適合的主題標籤,幫助社群形成主題共識,促進社群媒體意見的快速收斂。在實驗中,本研究邀請受試者使用此推薦系統,透過受試者的反饋來驗證系統的有用性。實驗結果顯示,本系統提出之互動式推薦流程可以幫助使用者找到適合推文主題的主題標籤。
    With the progressive advance of Internet technologies, more and more users share their lives by posting tweets on social media platforms like Twitter. These tweets use hashtags as links to constitute discussion topics on social media. However, since most users are not used to using hashtags, a large number of tweets cannot be classified into corresponding topics immediately, which leads to a discrete state of information. To solve this problem, in this thesis, we propose an interactive hashtag recommendation system, which predicts the topic of an input tweet and interactively recommends rele-vant hashtags. This recommendation system can provide suitable hashtags in different phases of writing a tweet based on the interactive feedback of a user, help the commu-nity to reach a consensus, and increase the convergence speed of opinions on social media. We conducted user experiments to verify the usability of the recommendation system. The experimental results and user feedbacks reveal that the interactive hashtag recommendation can help users find suitable hashtags about the tweet’s topic.
    Reference: [1] S. M. Kywe, E.-P. Lim, and F. Zhu, "A survey of recommender systems in twitter," in Proceedings of the International Conference on Social Informatics, 2012: Springer, pp. 420-433.
    [2] H. Tsukayama, "Twitter turns 7: Users send over 400 million tweets per day," The Washington Post, vol. 21, 2013.
    [3] F. Godin, V. Slavkovikj, W. De Neve, B. Schrauwen, and R. Van de Walle, "Using topic models for twitter hashtag recommendation," in Proceedings of the 22nd International Conference on World Wide Web, 2013, pp. 593-596.
    [4] D. Bahdanau, K. Cho, and Y. Bengio, "Neural machine translation by jointly learning to align and translate," arXiv preprint arXiv:1409.0473, 2014.
    [5] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser, and I. Polosukhin, "Attention is all you need," in Advances in neural information processing systems, 2017, pp. 5998-6008.
    [6] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, "Bert: Pre-training of deep bidirectional transformers for language understanding," arXiv preprint arXiv:1810.04805, 2018.
    [7] D. M. Blei, A. Y. Ng, and M. I. Jordan, "Latent dirichlet allocation," The Journal of Machine Learning Research, vol. 3, pp. 993-1022, 2003.
    [8] A. K. McCallum, "Mallet: A machine learning for language toolkit," http://mallet.cs.umass.edu, 2002.
    [9] X. Yan, J. Guo, Y. Lan, and X. Cheng, "A biterm topic model for short texts," in Proceedings of the 22nd international conference on World Wide Web, 2013, pp. 1445-1456.
    [10] C. Sievert and K. Shirley, "LDAvis: A method for visualizing and interpreting topics," in Proceedings of the workshop on interactive language learning, visualization, and interfaces, 2014, pp. 63-70.
    [11] K. Dey, R. Shrivastava, S. Kaushik, and L. V. Subramaniam, "Emtagger: a word embedding based novel method for hashtag recommendation on twitter," in 2017 IEEE International Conference on Data Mining Workshops (ICDMW), 2017: IEEE, pp. 1025-1032.
    [12] E. Otsuka, S. A. Wallace, and D. Chiu, "Design and evaluation of a twitter hashtag recommendation system," in Proceedings of the 18th International Database Engineering & Applications Symposium, 2014, pp. 330-333.
    [13] T. Li, Y. Wu, and Y. Zhang, "Twitter hash tag prediction algorithm," in Proceedings on the International Conference on Internet Computing (ICOMP), 2011: Citeseer, p. 1.
    [14] B. Dhingra, Z. Zhou, D. Fitzpatrick, M. Muehl, and W. W. Cohen, "Tweet2vec: Character-based distributed representations for social media," arXiv preprint arXiv:1605.03481, 2016.
    [15] D. Kowald, S. C. Pujari, and E. Lex, "Temporal effects on hashtag reuse in twitter: A cognitive-inspired hashtag recommendation approach," in Proceedings of the 26th International Conference on World Wide Web, 2017, pp. 1401-1410.
    [16] A. J. Lam and C. Cheng, "Utilizing Tweet Content for the Detection of Sentiment-Based Interaction Communities on Twitter," in 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA), 2018: IEEE, pp. 682-691.
    [17] A. Trotman, A. Puurula, and B. Burgess, "Improvements to BM25 and language models examined," in Proceedings of the 2014 Australasian Document Computing Symposium, 2014, pp. 58-65.
    [18] S. Humeau, K. Shuster, M.-A. Lachaux, and J. Weston, "Poly-encoders: Transformer architectures and pre-training strategies for fast and accurate multi-sentence scoring," arXiv preprint arXiv:1905.01969, 2019.
    [19] N. Reimers and I. Gurevych, "Sentence-bert: Sentence embeddings using siamese bert-networks," arXiv preprint arXiv:1908.10084, 2019.
    [20] M. Kaviani and H. Rahmani, "Emhash: Hashtag recommendation using neural network based on bert embedding," in 2020 6th International Conference on Web Research (ICWR), 2020: IEEE, pp. 113-118.
    [21] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, "Using collaborative filtering to weave an information tapestry," Communications of the ACM, vol. 35, no. 12, pp. 61-70, 1992.
    [22] Y. Koren, R. Bell, and C. Volinsky, "Matrix factorization techniques for recommender systems," Computer, vol. 42, no. 8, pp. 30-37, 2009.
    [23] T. Miyanishi, K. Seki, and K. Uehara, "Improving pseudo-relevance feedback via tweet selection," in Proceedings of the 22nd ACM international conference on Information & Knowledge Management, 2013, pp. 439-448.
    [24] L. Richardson, "Beautiful soup documentation," Dosegljivo: https://www.crummy.com/software/BeautifulSoup/bs4/doc/. [Dostopano: 7. 7. 2018], 2007.
    [25] M. Lui and T. Baldwin, "langid. py: An off-the-shelf language identification tool," in Proceedings of the ACL 2012 system demonstrations, 2012, pp. 25-30.
    [26] R. Řehůřek and P. Sojka, "Gensim—statistical semantics in python," Retrieved from genism. org, 2011.
    [27] S. E. Robertson and K. S. Jones, "Relevance weighting of search terms," Journal of the American Society for Information science, vol. 27, no. 3, pp. 129-146, 1976.
    [28] S. Robertson and H. Zaragoza, The probabilistic relevance framework: BM25 and beyond. Now Publishers Inc, 2009.
    [29] J. Ramos, "Using tf-idf to determine word relevance in document queries," in Proceedings of the first instructional conference on machine learning, 2003, vol. 242, no. 1: Citeseer, pp. 29-48.
    [30] Y. Lv and C. Zhai, "Lower-bounding term frequency normalization," in Proceedings of the 20th ACM international conference on Information and knowledge management, 2011, pp. 7-16.
    [31] F. Jian, J. X. Huang, J. Zhao, Z. Ying, and Y. Wang, "A topic‐based term frequency normalization framework to enhance probabilistic information retrieval," Computational Intelligence, vol. 36, no. 2, pp. 486-521, 2020.
    [32] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M.Lewis, L. Zettleoyer, and V. Stoyanov, "Roberta: A robustly optimized bert pretraining approach," arXiv preprint arXiv:1907.11692, 2019.
    [33] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, "DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter," arXiv preprint arXiv:1910.01108, 2019.
    [34] T. M. H. Reenskaug, "The original MVC reports," 1979.
    [35] M. Potel, "MVP: Model-View-Presenter the Taligent programming model for C++ and Java," Taligent Inc, p. 20, 1996.
    [36] E. Wilde and C. Pautasso, REST: from research to practice. Springer Science & Business Media, 2011.
    [37] A. Fedosejev, React. js essentials. Packt Publishing Ltd, 2015.
    [38] B. Efron and R. J. Tibshirani, An introduction to the bootstrap. CRC press, 1994.
    [39] B. Bibeault, A. De Rosa, and Y. Katz, jQuery in Action. Simon and Schuster, 2015.
    [40] J. J. Garrett, "Ajax: A new approach to web applications," 2005.
    [41] J. Brooke, "System usability scale (SUS): a quick-and-dirty method of system evaluation user information," Reading, UK: Digital Equipment Co Ltd, vol. 43, pp. 1-7, 1986.
    [42] R. Likert, "A technique for the measurement of attitudes," Archives of psychology, 1932.
    [43] A. M. Lund, "Measuring usability with the use questionnaire12," Usability interface, vol. 8, no. 2, pp. 3-6, 2001.
    [44] M. F. Porter, "Snowball: A language for stemming algorithms," ed, 2001.
    [45] A. Bangor, P. Kortum, and J. Miller, "Determining what individual SUS scores mean: Adding an adjective rating scale," Journal of usability studies, vol. 4, no. 3, pp. 114-123, 2009.
    [46] P. Virtanen, R. Gommers, T. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, and J. Bright, "SciPy 1.0: fundamental algorithms for scientific computing in Python," Nature methods, vol. 17, no. 3, pp. 261-272, 2020.
    Description: 碩士
    國立政治大學
    資訊科學系
    109753208
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0109753208
    Data Type: thesis
    DOI: 10.6814/NCCU202200469
    Appears in Collections:[Department of Computer Science ] Theses

    Files in This Item:

    File Description SizeFormat
    320801.pdf4797KbAdobe PDF272View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback