Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/140658
|
Title: | 對具數學能力高中生的職涯表現之研究 A study of the career performance of mathematically inclined high school students |
Authors: | 黃煥融 Huang, Huan-Rong |
Contributors: | 姜志銘 Thomas J. Jiang 黃煥融 Huang, Huan-Rong |
Keywords: | 數學能力 主成分分析 因子分析 簡單迴歸分析 卡方檢定 Mathematical ability Principal component analysis Factor analysis Simple regression analysis Chi-square test |
Date: | 2022 |
Issue Date: | 2022-07-01 16:20:29 (UTC+8) |
Abstract: | 對具數學能力高中生而言,怎麼做可能會對他們的未來職涯有較佳的表現?為了回答此問題,我們設計了一個抽樣調查,詢問他們於此一階段中相關資訊的八個題目(變數)。依據回收問卷的資料,我們進行主成分分析、因子分析、簡單迴歸分析和卡方檢定。 根據主成分分析,我們找到包含“工作年數的長短”、“家庭工作所得高低”、“代間階級向上流動的能力高低”和“教育年數與社經地位值差異的大小”的四個主成分。根據因子分析,我們找到包含“財務問題度而影響追求更高教育”、“長輩代表對社會影響力的高低”與“選擇理工相關職業的意願度”的三個因子。根據簡單迴歸分析,我們發現除了“財務問題度而影響追求更高教育”這個因子之外,其他主成分與因子皆和他們的職涯成就有顯著的線性相關。此外,我們透過卡方檢定發現數學能力與職業類別有著相依關係。對於數學能力較高者,他們選擇廣義理工相關職業的比例顯著高於教育類和其他類別。 根據統計分析的結論,我們建議對更佳職涯表現有興趣的學生可以“充實自我以具備較高且具品質的教育”,“ 善用教育及人際關係等各項資源”,“ 培養對數理相關領域的興趣”。 What could make a difference in a mathematically inclined high school student’s career performance? To answer this question, we design a sample survey to ask them about the relevant information in eight questions (variables). With the data from the returned questionnaires, we run principle component analysis, factor analysis, simple regression analysis and chi-square test. With principle component analysis, we find four components, including “years of employment”, “family income”, “intergenerational mobility” and “years of education - the socioeconomic status”. Through factor analysis, we find three factors, including “inability to pursue higher education due to financial circumstances”, “the level of the influence to the society by the elder family member”, and “the willingness to work in science, technology, engineering, and mathematics (STEM) related areas”. From simple regression analysis, we find that each component and factor, other than the factor “inability to pursue higher education due to financial circumstances”, has positive linear correlation with the subject’s career performance. In addition, we discover that there is a dependent relation between the mathematical ability and career fields by the chi-square test. For those with higher mathematical ability, the percentage of subjects with careers in STEM fields is significantly higher than those with careers in education or others. Based on the results of statistical analyses, we recommend students who are interested in higher career achievement to seek out higher and quality education, to make best uses of education, interpersonal relation and other available resources, and to cultivate their interests in STEM. |
Reference: | 英文部分 1.Blau, P. M., and Duncan, O. D. (1967), The American occupation structure, New York: John Wiley and Sons. 2.Ganzeboom, H. B., and Treiman, D. J. (1996). Internationally comparable measures of occupational status for the 1988 international standard classification of occupations. Social Science Research, 25(3), 201-239. 3.Hollingshed, A. B. (1958). Social class and mental illness: A community study. New York: John Wiley and Sons. 4.Johnson, Richard A., and Dean W. Wichern (2007). Applied Multivariate Statistical Analysis. Upper Saddle River, N.J. : Pearson Education. 5.Marks, G. N., and Pokropek, A. (2019). Family income effects on mathematics achievement: Their relative magnitude and causal pathways. Oxford Review of Education, 45(6), 769-785. 6.Neter, J., Kutner, M. H., Nachtsheim, C. J., and Wasserman, W. (1996). Applied Linear Regression Models. Chicago, Irwin. 7.Sirin, S. R. (2005). Socioeconomic status and academic achievement: A meta-analytic review of research. Review of Educational Research, 75(3), 417-453. 8.Treiman, D. J. (1977). Occupational prestige in comparative perspective. New York: Academic. 中文部分 1.行政院主計處 (2010)。中華民國職業標準分類(第六次修正版),臺北市: 行政院主計處。(瀏覽日期 : 2021年3月7號) 2.林瀚陞 (2021)。個人數學能力對其未來生涯之研究。國立政治大學應用數學系碩士論文,台北市。 3.國家教育研究院雙語詞彙、學術名詞暨辭書資訊網,網址 : https://terms.naer.edu.tw/detail/1303547/ 4.陳奎憙 (2013)。教育社會學修訂四版。臺北市: 三民書局。 5.陳順宇 (2004)。多變量分析 三版。臺北:華泰書局。 6.陳順宇 (2009)。迴歸分析 四版。台北:三民書局。 7.黃毅志 (1997)。社會科學與教育研究本土化 : 臺灣地區社經地位(SES)測量之重新考量。載於侯松荗(主編),八十五學年度師範學院教育學術論文發表會論文集3,臺東市 : 國立臺東師範學院。 8.黃毅志 (2003)。「臺灣地區新職業聲望與社經地位量表」之建構與評估:社會科學與教育社會學研究本土化。師大教育研究集刊,49(4),1-31。 9.黃毅志 (2008)。如何精確測量職業地位?「改良版臺灣地區新職業聲望與社經地位量表」之建構。台東大學教育學報,19(1),151-160 10.黃毅志 (2009) 。國際新職業量表在台灣教育研究中的適用性:本土化與國際化的考量。教育研究集刊,54(3),1-27。 11.龔心怡、林素卿、張馨文 (2009)。家長社經地位與數學學習動機對數學成就之研究¬¬¬-以國中基本學力測驗為例。彰化師大教育學報,第15輯,121-142。 |
Description: | 碩士 國立政治大學 應用數學系 107751004 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0107751004 |
Data Type: | thesis |
DOI: | 10.6814/NCCU202200479 |
Appears in Collections: | [應用數學系] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
100401.pdf | | 5797Kb | Adobe PDF2 | 0 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|