政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/140392
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114105/145137 (79%)
Visitors : 52192747      Online Users : 348
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/140392


    Title: From approximate synchronization to identical synchronization in coupled systems
    Authors: 曾睿彬
    Tseng, Jui-Pin
    Shih, Chih-Wen
    Contributors: 應數系
    Keywords: Approximate synchronization;identical synchronization;asymptotic synchronization;coupled system;asymptotic behavior
    Date: 2020-09
    Issue Date: 2022-06-24 15:32:42 (UTC+8)
    Abstract: We establish a framework to investigate approximate synchronization of coupled systems under general coupling schemes. The units comprising the coupled systems may be nonidentical and the coupling functions are nonlinear with delays. Both delay-dependent and delay-independent criteria for approximate synchronization are derived, based on an approach termed sequential contracting. It is explored and elucidated that the synchronization error, the distance between the asymptotic state and the synchronous set, decreases with decreasing difference between subsystems, difference between the row sums of connection matrix, and difference of coupling time delays between different units. This error vanishes when these factors decay to zero, and approximate synchronization becomes identical synchronization for the coupled system comprising identical subsystems and connection matrix with identical row sums, and with identical coupling delays. The application of the present theory to nonlinearly coupled heterogeneous FitzHugh-Nagumo neurons is illustrated. We extend the analysis to study approximate synchronization and asymptotic synchronization for coupled Lorenz systems and show that for some coupling schemes, the synchronization error decreases as the coupling strength increases, whereas in another case, the error remains at a substantial level for large coupling strength.
    Relation: Discrete and Continuous Dynamical Systems - B, 25(9), 3677-3714
    Data Type: article
    DOI link: https://doi.org/10.3934/dcdsb.2020086
    DOI: 10.3934/dcdsb.2020086
    Appears in Collections:[Department of Mathematical Sciences] Periodical Articles

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML2286View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback