Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/140218
|
Title: | 用於減緩虛擬實境暈眩之輔助系統 An Auxiliary System of Alleviating Motion Sickness in Virtual Environment |
Authors: | 王中瑋 Wang, Chung-Wei |
Contributors: | 余能豪 Yu, Nen-Hao 王中瑋 Wang, Chung-Wei |
Keywords: | 虛擬實境 暈動症 頭戴式裝置 360 影片 駕駛模擬 觸覺回饋 Virtual reality Motion sickness Head mounted display 360 videos Driving simulations Haptic feedback |
Date: | 2022 |
Issue Date: | 2022-06-01 16:33:42 (UTC+8) |
Abstract: | 虛擬實境技術在過去幾年越發成熟,從初期的硬體及軟體開發已經解決了部分技術難題來提升使用者對於虛擬實境的體驗。而最困難的問題其中之一──暈動症(cybersickness)仍未解決,它會導致頭痛、噁心、嘔吐、疲勞等症狀。 暈動症的主要原因是來自於視覺感知和前庭系統間的衝突。許多應用程式或遊戲會要求使用者在超出追蹤設備涵蓋面積的虛擬環境中移動,此時會使用到虛擬移動。許多使用者曾回報說,當他們在虛擬環境中使用虛擬搖桿進行移動,而身體保持靜止時,容易造成暈動症。 為了提供更高的沈浸感並減少不適感,本研究設計了一套應用於頭戴式裝置(HMD)上的震動穿戴裝置。透過 HMD 上四個位置的震動馬達,欲模擬出在連續的平面移動(如駕駛、滑行)上,四個方向所受到的慣性力回饋。 本系統總共徵集了 18 位受測者,欲了解使用者於不同情況下,各裝置降低暈眩的成效。此外,也對使用者的回饋進行了質化分析,討論目前裝置存在的問題及未來可改善的方向。 Virtual reality technology has become more mature in the past few years, and some technical issues have been solved by early hardware and software development to improve the user experience of virtual reality. One of the most difficult issues remains: cybersickness, which causes headaches, nausea, vomiting and fatigue. The main cause of motion sickness is a conflict between visual perception and the vestibular system. Many applications or games require the user to move in a virtual environment that exceeds the area covered by the tracking device. Many users have reported suffering from motion sickness when they use a virtual stick to move around in a virtual environment while their body remains still. In order to provide a higher immersion sensation and reduce discomfort, a vibrating wearable device was designed for the head-mounted device (HMD). Through the vibration motor at four positions on the HMD, we want to simulate the inertial force feedback received in four directions in the continuous planar movement such as driving and sliding. A total of 18 subjects were collected for this system to understand the effectiveness of each device in reducing dizziness for users under different conditions. In addition, a qualitative analysis of the user`s feedback was conducted to discuss the current problems of the device and the direction for improvement in the future. |
Reference: | [1] Benson AJ. 1988. Motion sickness. In Aviation medicine, 2nd edn, King P Ernsting J (Ed.). Butterworth-Heinemann Ltd., Oxford. [2] Baris Aykent, Frederic Merienne, Christophe Guillet, Damien Paillot, and Andras Kemeny. 2014. Motion sickness evaluation and comparison for a static driving simulator and a dynamic driving simulator. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 228, 7 (jun 2014), 818–829. https://doi.org/10.1177/0954407013516101 [3] Oliver Beren Kaul, Michael Rohs, Benjamin Simon, Kerem Can Demir, and Kamillo Ferry. 2020. Vibrotactile Funneling Illusion and Localization Performance on the Head. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. ACM, New York, NY, USA. http: //dx.doi.org/10.1145/3313831.3376335 [4] Jelte E. Bos. 2015. Less sickness with more motion and/or mental distraction. Journal of Vestibular Research: Equilibrium and Orientation 25, 1 (jan 2015), 23–33. https://doi.org/10.3233/VES-150541 [5] Jelte E. Bos, Willem Bles, and Eric L. Groen. 2008. A theory on visually induced motion sickness. Displays 29, 2 (mar 2008), 47–57. https: //doi.org/10.1016/j.displa.2007.09.002 [7] Evren Bozgeyikli, Andrew Raij, Srinivas Katkoori, and Rajiv Dubey. 2016. Point & Teleport locomotion technique for virtual reality. In CHI PLAY 2016 - Proceedings of the 2016 Annual Symposium on Computer-Human Interaction in Play. Association for Computing Machinery, Inc, New York, NY, USA, 205–216. https://doi.org/10.1145/2967934.2968105 [8] Helmut Buhler, Sebastian Misztal, and Jonas Schild. 2018. Reducing VR Sickness Through Peripheral Visual Effects. In 25th IEEE Conference on Virtual Reality and 3D User Interfaces, VR 2018 - Proceedings. Institute of Electrical and Electronics Engineers Inc., 517–519. https://doi.org/10.1109/ VR.2018.8446346 [9] Zekun Cao. 2017. The effect of rest frames on simulator sickness reduction. (2017). https://doi.org/10.13140/RG.2.2.14954.98240 [10] Michael J. Cevette, Jan Stepanek, Daniela Cocco, Anna M. Galea, Gaurav N. Pradhan, Linsey S. Wagner, Sarah R. Oakley, Benn E. Smith, David A. Zapala, and Kenneth H. Brookler. 2012. Oculo-Vestibular Recoupling Using Galvanic Vestibular Stimulation to Mitigate Simulator Sickness. Aviation Space and Environmental Medicine 83, 6 (2012), 549–555. https://doi.org/10.3357/ASEM.3239.2012 [11] B. Cheung. 2004. Nonvisual spatial orientation mechanisms. In Spatial Disorientation in Aviation. Progress in Astronautics and Aeronautics, W.R. Ercoline F.H. Previc (Ed.), Vol. 203. American Institute of Aeronautics and Astronautics, Inc, Restoin, Virginia, 37–94. [12] Sarah D’Amour, Jelte E. Bos, and Behrang Keshavarz. 2017. The efficacy of airflow and seat vibration on reducing visually induced motion sickness. Experimental Brain Research 235, 9 (sep 2017), 2811–2820. https://doi.org/10.1007/s00221-017-5009-1 [13] Fabien Danieau, Julien Fleureau, Philippe Guillotel, Nicolas Mollet, Anatole Lécuyer, and Marc Christie. 2012. HapSeat: Producing Motion Sensation with Multiple Force-Feedback Devices Embedded in a Seat. In Proceedings of the 18th ACM Symposium on Virtual Reality Software and Technology (VRST ’12). Association for Computing Machinery, New York, NY, USA, 69–76. https://doi.org/10.1145/2407336.2407350 [14] Victor Adriel De Jesus Oliveira, Luca Brayda, Luciana Nedel, and Anderson Maciel. 2017. Designing a Vibrotactile Head-Mounted Display for Spatial Awareness in 3D Spaces. IEEE Transactions on Visualization and Computer Graphics 23, 4 (apr 2017), 1340–1348. https://doi.org/10.1109/TVCG.2017. 2657238 [15] Victor Adriel De Jesus Oliveira, Luciana Nedel, Anderson Maciel, and Luca Brayda. 2016. Localized magnification in vibrotactile HMDs for accurate spatial awareness. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 9775. Springer Verlag, 55–64. https://doi.org/10.1007/978-3-319-42324-1_6 [16] Victor Adriel De Jesus Oliveira, Luciana Nedel, Anderson Maciel, and Luca Brayda. 2016. Spatial discrimination of vibrotactile stimuli around the head. In IEEE Haptics Symposium, HAPTICS, Vol. 2016-April. IEEE Computer Society, 1–6. https://doi.org/10.1109/HAPTICS.2016.7463147 [17] Ajoy S. Fernandes and Steven K. Feiner. 2016. Combating VR sickness through subtle dynamic field-of-view modification. In 2016 IEEE Symposium on 3D User Interfaces, 3DUI 2016 - Proceedings. Institute of Electrical and Electronics Engineers Inc., 201–210. https://doi.org/10.1109/3DUI.2016.7460053 [18] Germán Gálvez-García, Marion Hay, and Catherine Gabaude. 2015. Alleviating simulator sickness with galvanic cutaneous stimulation. Human Factors 57, 4 (jun 2015), 649–657. https://doi.org/10.1177/0018720814554948 [19] Kirby Gilliland and Robert E. Schlegel. 1994. Tactile Stimulation of the Human Head for Information Display. Human Factors: The Journal of the Human Factors and Ergonomics Society 36, 4 (dec 1994), 700–717. https://doi.org/10.1177/001872089403600410 [20] J. M. Goldberg and C. Fernandez. 1975. Responses Of Peripheral Vestibular Neurons To Angular And Linear Accelerations In The Squirrel Monkey. Acta Oto-Laryngologica 80, 1-6 (1975), 101–110. https://doi.org/10.3109/00016487509121307 arXiv:https://doi.org/10.3109/00016487509121307 [21] John F Golding. 1998. Motion sickness susceptibility questionnaire revised and its relationship to other forms of sickness. Brain Research Bulletin 47, 5 (1998), 507 – 516. https://doi.org/10.1016/S0361-9230(98)00091-4 [22] J. F. Golding, W. Bles, J. E. Bos, T. Haynes, and M. A. Gresty. 2003. Motion Sickness and Tilts of the Inertial Force Environment: Active Suspension Systems vs. Active Passengers. Aviation, Space, and Environmental Medicine 74, 3 (2003), 220–227. https://www.ingentaconnect.com/content/asma/ asem/2003/00000074/00000003/art00004 [23] M Hirose, D Schmalstieg, C A Wingrave, K Nishimura, Daniel Cliburn, Stacy Rilea, David Parsons, Prakash Surya, and Jessica Semler. 2009. EUROGRAPHICS EUROGRAPHICS D L IGITAL IBRARY Short Paper: The Effects of Teleportation on Recollection of the Structure of a Virtual World. Joint Virtual Reality Conference of EGVE-ICAT (2009). https://doi.org/10.2312/EGVE/JVRC09/117-120 [24] H I Honolulu and Usa Chi. [n.d.]. WalkingVibe: Reducing Virtual Reality Sickness and Improving Realism while Walking in VR using Unobtrusive Head-mounted Vibrotactile Feedback. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, Vol. 20. ACM, New York, NY, USA. http://dx.doi.org/10.1145/3313831.3376847 [25] H. Iwata. 1999. The Torus Treadmill: realizing locomotion in VEs. IEEE Computer Graphics and Applications 19, 6 (1999), 30–35. [26] M. P. Jacob Habgood, David Moore, David Wilson, and Sergio Alapont. 2018. Rapid, Continuous Movement between Nodes as an Accessible Virtual Reality Locomotion Technique. In 25th IEEE Conference on Virtual Reality and 3D User Interfaces, VR 2018 - Proceedings. Institute of Electrical and Electronics Engineers Inc., 371–378. https://doi.org/10.1109/VR.2018.8446130 [27] Oliver Beren Kaul and Michael Rohs. 2016. HapticHead: 3D Guidance and Target Acquisition through a Vibrotactile Grid. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems (CHI EA ’16). Association for Computing Machinery, New York, NY, USA, 2533–2539. https://doi.org/10.1145/2851581.2892355 [28] Oliver Beren Kaul and Michael Rohs. 2017. HapticHead: A spherical vibrotactile grid around the head for 3D guidance in virtual and augmented reality. In Conference on Human Factors in Computing Systems - Proceedings, Vol. 2017-January. Association for Computing Machinery, New York, NY, USA, 3729–3740. https://doi.org/10.1145/3025453.3025684 [29] Robert S. Kennedy, Norman E. Lane, Kevin S. Berbaum, and Michael G. Lilienthal. 1993. Simulator Sickness Questionnaire: An Enhanced Method for Quantifying Simulator Sickness. The International Journal of Aviation Psychology 3, 3 (1993), 203–220. https://doi.org/10.1207/s15327108ijap0303_3 [30] Behrang Keshavarz, Bernhard E. Riecke, Lawrence J. Hettinger, and Jennifer L. Campos. 2015. Vection and visually induced motion sickness: how are they related? Frontiers in Psychology 6 (2015), 472. https://doi.org/10.3389/fpsyg.2015.00472 [31] H. Keshavarz, B. Hecht and B. D. Lawson. 2014a. Visually induced motion sickness: characteristics, causes, and countermeasures,. In Handbook of Virtual Environments: Design, Implementation, and Applications, K. S. Hale and K. M. Stanney (Eds.). CRC Press, Boca Raton, FL, 648–697. [32] Joseph J. LaViola. 2000. A discussion of cybersickness in virtual environments. ACM SIGCHI Bulletin 32, 1 (jan 2000), 47–56. https://doi.org/10. 1145/333329.333344 [33] Shi-Hong Liu, Pai-Chien Yen, Yi-Hsuan Mao, Yu-Hsin Lin, Erick Chandra, and Mike Y. Chen. 2020. HeadBlaster : a wearable approach to simulating motion perception using head-mounted air propulsion jets. ACM Transactions on Graphics 39, 4 (aug 2020), 12. https://doi.org/10.1145/3386569.3392482 [34] Shi Hong Liu, Neng Hao Yu, Liwei Chan, Yi Hao Peng, Wei Zen Sun, and Mike Y. Chen. 2019. PhantomLegs: Reducing virtual reality sickness using head-worn haptic devices. In 26th IEEE Conference on Virtual Reality and 3D User Interfaces, VR 2019 - Proceedings. Institute of Electrical and Electronics Engineers Inc., 817–826. https://doi.org/10.1109/VR.2019.8798158 [35] Guillaume Lucas, Andras Kemeny, Damien Paillot, and Florent Colombet. 2020. A simulation sickness study on a driving simulator equipped with a vibration platform. Transportation Research Part F: Traffic Psychology and Behaviour 68 (jan 2020), 15–22. https://doi.org/10.1016/j.trf.2019.11.011 [36] T. Maeda, H. Ando, and M. Sugimoto. [n.d.]. Virtual acceleration with galvanic vestibular stimulation in a virtual reality environment. In IEEE Proceedings. VR 2005. Virtual Reality, 2005. IEEE, 289–290. https://doi.org/10.1109/VR.2005.1492799 [37] Kimberly Myles, Joel T. Kalb, Janea Lowery, and Bheem P. Kattel. 2015. The effect of hair density on the coupling between the tactor and the skin of the human head. Applied Ergonomics 48 (2015), 177 – 185. https://doi.org/10.1016/j.apergo.2014.11.007 [38] Eugene Nalivaiko, John A Rudd, and Richard HY So. 2014. Motion sickness, nausea and thermoregulation: The “toxic” hypothesis. Temperature 1, 3 (2014), 164–171. https://doi.org/10.4161/23328940.2014.982047 [39] Charles M. Oman. 1990. Motion sickness: a synthesis and evaluation of the sensory conflict theory. Canadian Journal of Physiology and Pharmacology 68, 2 (feb 1990), 294–303. https://doi.org/10.1139/y90-044 [40] Yun Suen Pai and Kai Kunze. 2017. Armswing: Using Arm Swings for Accessible and Immersive Navigation in AR/VR Spaces. In 16th International Conference on Mobile and Ubiquitous Multimedia. Association for Computing Machinery, Inc, New York, NY, USA, 189–198. [41] Jerrold D. Prothero. 1998. The Role of Rest Frames in Vection, Presence and Motion Sickness (Doctoral Thesis). Technical Report. University of Washington, HIT-Lab. 1–169 pages. [42] CE Rash, MB Russo, TR Letowski, and ET Schmeisser. 2009. Helmet-mounted displays: Sensation, perception and cognition issues. Technical Report. http://oai.dtic.mil/oai/oai?verb=getRecord{\\&}metadataPrefix=html{\\&}identifier=ADA522022 [43] Michael Rietzler, Katrin Plaumann, Taras Kr "aenzle, Marcel Erath, Alexander Stahl, and Enrico Rukzio. [n.d.]. VaiR: Simulating 3D Airflows in Virtual Reality. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. ACM, New York, NY, USA. http://dx.doi.org/10.1145/3025453.3026009 [44] Kevin S. Berbaum & Michael G. Lilienthal Robert S. Kennedy, Norman E. Lane. 1993. Simulator Sickness Questionnaire: An Enhanced Method for Quantifying Simulator Sickness. The International Journal of Aviation Psychology 3:3 (1993), 203–220. [45] Katja Rogers, Maria Aufheimer, Michael Weber, and Lennart E. Nacke. 2018. Towards the Visual Design of Non-Player Characters for Narrative Roles. In Proceedings of Graphics Interface 2018 (GI 2018). Canadian Human-Computer Communications Society / Société canadienne du dialogue humain-machine, 154 – 161. https://doi.org/10.20380/GI2018.21 [46] ARNON ROLNICK and R. E. LUBOW. 1991. Why is the driver rarely motion sick? The role of controllability in motion sickness. Ergonomics 34, 7 (1991), 867–879. https://doi.org/10.1080/00140139108964831 arXiv:https://doi.org/10.1080/00140139108964831 PMID: 1915252. [47] J. L. Souman, P. Robuffo Giordano, M. Schwaiger, I. Frissen, T. Thümmel, H. Ulbrich, A. De Luca, H. H. Bülthoff, and M. O. Ernst. 2008. CyberWalk: Enabling Unconstrained Omnidirectional Walking through Virtual Environments. ACM Trans. Appl. Percept. 8, 4, Article 25 (Dec. 2008), 22 pages. https://doi.org/10.1145/2043603.2043607 [48] D. Swapp, J. Williams, and A. Steed. 2010. The implementation of a novel walking interface within an immersive display. In 2010 IEEE Symposium on 3D User Interfaces (3DUI). 71–74. [49] Chi Wang, Da Yuan Huang, Shuo Wen Hsu, Chu En Hou, Yeu Luen Chiu, Ruei Che Chang, Jo Yu Lo, and Bing Yu Chen. 2019. Masque: Exploring lateral skin stretch feedback on the face with head-mounted displays. In UIST 2019 - Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology. Association for Computing Machinery, Inc, New York, NY, USA, 439–451. https://doi.org/10.1145/3332165.3347898 [50] Séamas Weech, Jae Moon, and Nikolaus F. Troje. 2018. Influence of bone-conducted vibration on simulator sickness in virtual reality. PLOS ONE 13, 3 (mar 2018), e0194137. https://doi.org/10.1371/journal.pone.0194137 [51] Séamas Weech and Nikolaus F. Troje. 2017. Vection Latency Is Reduced by Bone-Conducted Vibration and Noisy Galvanic Vestibular Stimulation. Multisensory Research 30, 1 (jan 2017), 65–90. https://doi.org/10.1163/22134808-00002545 [52] Alexander Wilberz, Dominik Leschtschow, Christina Trepkowski, Jens Maiero, Ernst Kruijff, and Bernhard Riecke. 2020. FaceHaptics: Robot Arm based Versatile Facial Haptics for Immersive Environments, Vol. 20. Association for Computing Machinery (ACM), 1–14. https://doi.org/10.1145/ 3313831.3376481 [53] B.J Yates, A.D Miller, and J.B Lucot. 1998. Physiological basis and pharmacology of motion sickness: an update. Brain Research Bulletin 47, 5 (1998), 395 – 406. https://doi.org/10.1016/S0361-9230(98)00092-6 [54]Mods for Assetto Corsa https://assettocorsa.club/mods [55]Dr. David Whittinghill, Technical Artist Bootcamp: Nasum Virtualis: A Simple Technique for Reducing Simulator Sickness in Head Mounted VR, GDC’ 15, https://www.gdcvault.com/play/1022287/Technical-Artist-Bootcamp-Nasum-Virtualis [56 ]Shi-Hong Liu, Pai-Chien Yen, Yi-Hsuan Mao, Yu-Hsin Lin, Erick Chandra, Mike Y. Chen. 2021. MotionRing: Creating Illusory Tactile Motion around the Head using 360° Vibrotactile Headbands. In UIST 2021 - The 34th Annual ACM Symposium on User Interface Software and Technology. Association for Computing Machinery, Inc, New York, NY, USA, 724-731. https://doi.org/10.1145/3472749.3474781 |
Description: | 碩士 國立政治大學 資訊科學系 106753013 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0106753013 |
Data Type: | thesis |
DOI: | 10.6814/NCCU202200430 |
Appears in Collections: | [資訊科學系] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
301301.pdf | | 1529Kb | Adobe PDF2 | 127 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|