政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/139991
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113656/144643 (79%)
Visitors : 51736090      Online Users : 615
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/139991


    Title: 以類馬可夫模式評估疾病風險
    Evaluate Prognostic Risks by Semi-Markov Model
    Authors: 林亞萱
    Lin, Ya-Syuan
    Contributors: 陸行
    Luh, Hsing
    林亞萱
    Lin, Ya-Syuan
    Keywords: 類馬可夫模型
    設限資料
    評估風險
    Semi-Markov
    Censored data
    Risk accessment
    Date: 2022
    Issue Date: 2022-05-02 15:02:34 (UTC+8)
    Abstract: 本研究以部分設限資料之類馬可夫模型為基礎,並根據健保資料庫蒐集之數據直接驗證此模型之可行性。

    根據研究顯示,類馬可夫模型可以在醫學研究中分析患者狀態轉移的過程,且醫學研究中時常存在病程不完整的情況,所以我們認為部分設限資料之類馬可夫模型非常適合被應用在醫學研究中。希望透過現有的健保資料庫數據,將模型與實際數據作結合,活化醫療數據和使用。

    驗證結果顯示,此估計模型在資料完整情況下是相當好的估計方法; 而在設限情況下透過模型估計出來的轉移機率與實際轉移機率無太大差異,所以此估計模型確實可以用來估計我們所感興趣的轉移機率。並且,雖然資料完整未必在所有疾病都可準確估計,但可以看出整體趨勢往實際數值靠近。
    This thesis is based on the semi-Markov models for partially censored data. Data from the National Health Insurance Research Database are used to evaluate the feasibility of the model.

    According to the research, semi-Markov models can be used to analyze the process of state transitions of the patient. However, the patient history in medical research is sometimes incomplete. We evaluate the semi-Markov models for partially censored data and find it can greatly fit for medical research. Patient data is extracted from National Health Insurance Research Database, enhancing the sustainability of medical data and application.

    The verification result shows that this model performs well when the data is complete. Meanwhile, the estimate of transition probability under the censored situation is nonsignificantly different compared to the case with complete information. We can conclude that this model is suitable to estimate the transition probability that we are interested in. Still, although the completeness of information may not always induce precise prediction of all risks, but the approximation by the model correctly reflects the trend.
    Reference: [1] G. H. Weiss and M. Zelen. A semi-markov model for clinical trials. Journal of Applied
    Probability, 2(2):269–285, 1965.
    [2] B. W. Turnbull, B. W. Brown Jr, and M. Hu. Survivorship analysis of heart transplant data.
    Journal of the American Statistical Association, 69(345):74–80, 1974.
    [3] S. W. Lagakos. A stochastic model for censored-survival data in the presence of an
    auxiliary variable. Biometrics, pages 551–559, 1976.
    [4] S. W. Lagakos, C. J. Sommer, and M. Zelen. Semi-markov models for partially censored
    data. Biometrika, 65(2):311–317, 1978.
    [5] James R Broyles, Jeffery K Cochran, and Douglas C Montgomery. A statistical markov
    chain approximation of transient hospital inpatient inventory. European Journal of
    Operational Research, 207(3):1645–1657, 2010.
    [6] Gordon J Taylor, Sally I McClean, and Peter H Millard. Using a continuous-time markov
    model with poisson arrivals to describe the movements of geriatric patients. Applied
    stochastic models and data analysis, 14(2):165–174, 1998.
    [7] Chiying Wang, Sergio A Alvarez, Carolina Ruiz, and Majaz Moonis. Computational
    modeling of sleep stage dynamics using weibull semi-markov chains. In HEALTHINF,
    pages 122–130, 2013.
    [8] Benoit Liquet, Jean-François Timsit, and Virginie Rondeau. Investigating hospital
    heterogeneity with a multi-state frailty model: application to nosocomial pneumonia
    disease in intensive care units. BMC medical research methodology, 12(1):1–14, 2012.
    18
    [9] Jean-François Coeurjolly, Moliere Nguile-Makao, Jean-François Timsit, and Benoit
    Liquet. Attributable risk estimation for adjusted disability multistate models: application
    to nosocomial infections. Biometrical journal, 54(5):600–616, 2012.
    [10] C. C. Huang. Nonhomogeneous Markov Chains and Their Applications. Ph. D. thesis,
    Iowa State University, 1977.
    [11] A. Listwon and P. Saint-Pierre. Semimarkov: An R package for parametric estimation in
    multi-state semi-markov models. Journal of Statistical Software, 66(6):784, 2015.
    [12] A. Asanjarani, B. Liquet, and Y. Nazarathy. Estimation of semi-markov multi-state models:
    a comparison of the sojourn times and transition intensities approaches. The International
    Journal of Biostatistics, 2021. doi.org/10.1515/ijb-2020-0083
    [13] J. E. Ruiz-Castro and R. Pérez-Ocón. A semi-markov model in biomedical studies. 2004.
    [14] M. J. Phelan. Estimating the transition probabilities from censored markov renewal
    processes. Statistics & probability letters, 10(1):43–47, 1990.
    [15] E. L. Kaplan and P. Meier. Nonparametric estimation from incomplete observations.
    Journal of the American statistical association, 53(282):457–481, 1958.
    Description: 碩士
    國立政治大學
    應用數學系
    107751011
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0107751011
    Data Type: thesis
    DOI: 10.6814/NCCU202200399
    Appears in Collections:[Department of Mathematical Sciences] Theses

    Files in This Item:

    File Description SizeFormat
    101101.pdf16064KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback