政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/139559
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113822/144841 (79%)
Visitors : 51820304      Online Users : 492
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/139559


    Title: 社群媒體限時動態對使用者疫情因應行為的影響
    The Effects of Social Media Ephemeral Content on Users’ Coping Behavior
    Authors: 陳于庭
    Chen, Yu-Ting
    Contributors: 韓義興
    Han, Yi-Hsing
    陳于庭
    Chen, Yu-Ting
    Keywords: 短暫性內容
    Instagram限時動態
    敘事說服效果
    風險感知
    第三人效應
    因應行為
    Ephemeral content
    Instagram Stories
    Narrative persuasion effects
    Risk perception
    Third-person perception
    Coping behavior
    Date: 2021
    Issue Date: 2022-04-01 15:05:14 (UTC+8)
    Abstract: 研究的注意力一直集中在社群媒體和健康的交叉點上,但人們對社群媒體上的短暫性內容使用如何通過塑造公眾對社會問題的反應來影響使用者線上和線下的參與知之甚少。本研究的目的是利用Instagram限時動態功能,探討疫情流行期間年輕人的 Instagram限時動態使用、風險感知、第三人效應、敘事說服效果和因應行為之間的關係。
    首先,透過線上問卷蒐集 819 份樣本,以調查用戶的 Instagram 限時動態使用情況以及它如何影響台灣 COVID-19 爆發期間 18 至 35 歲人群的用戶對防疫行為的態度。該調查包括人口統計細節、Instagram限時動態使用情況、敘事說服效果、風險感知、關於疫情期間的第三人效應和因應行為。
    調查結果強調了政府和公共衛生部門透過“限時動態”功能有效傳播官方訊息來加強其社群媒體運營和政策實施的有益影響。研究更發現,Instagram限時動態參與度和因應行為之間的正向聯繫是由敘事說服效果和第三人效應所調節的。該研究針對往後研究不同平台以及組織如何將其用作疫情大流行中的健康溝通指南提供建議。
    Research attention has been focused on the intersection of social media and health, but little is known about how ephemeral content usage on social media would impact users’ engagement both online and in the real world by shaping the public`s response to social issues. The aim of this paper is to explore the relationship between Instagram Stories, risk perception, third-person perception, narrative persuasion effects, and coping behavior among young people by using Instagram Stories features in the time of the pandemic.
    A sample of 819 participants was surveyed to investigate their Instagram Stories usage as well as how it influences users` attitudes of epidemic prevention behaviors during the COVID-19 outbreak in Taiwan with people aged from 18 to 35 years old. The survey included demographic details; Instagram Stories usage; risk perception; third-person perception, narrative persuasion effect, and coping behavior regarding the pandemic.
    Findings highlight the useful implications for governments and public health sectors to enhance their social media operations and policy implementation by effectively disseminating official messages through the Stories feature. Moreover, it also shows that the positive link between Instagram Stories engagement and coping behavior is mediated by the narrative persuasion effect and third-person perception. The study provides suggestions for researchers to examine different platforms and on how organizations can use them as a guide to health communication in the pandemic.
    Reference: Abd-alrazaq, A., Alhuwail, D., Househ, M., Hamdi, M., & Shah, Z. (2020). Top concerns of Tweeters during the COVID-19 pandemic: Infoveillance study. Journal of Medical
    Internet Research, 22(4). doi:10.2196/19016
    Agosto, L. E. (2013, April). Sección 3: Redes sociales [Section 3: Social networks]. Guía de periodismo en la era digital [A guide for journalism in the digital era] [Report].
    International Center for Journalists. Retrieved from:
    https://www.icfj.org/sites/default/files/201806/icfj_guia_de_periodismo_FINAL.pdf
    Ali, S. H., Foreman, J., Tozan, Y., Capasso, A., Jones, A. M., & DiClemente, R. J. (2020). Trends and Predictors of COVID-19 Information Sources and Their Relationship With Knowledge and Beliefs Related to the Pandemic: Nationwide Cross-Sectional Study. JMIR Public Health Surveill, 6(4), e21071. doi:10.2196/21071
    Alter, A. (2017). Irresistible: The rise of addictive technology and the business of keeping
    us hooked. New York, NY: Penguin Books, pp. 38–39.
    Althaus, S. L. (1998). Information Effects in Collective Preferences. The American political
    science review, 92(3), 545-558. doi:10.2307/2585480
    Alsulaiman, S. A., & Rentner, T. L. (2018). The health belief model and preventive measures: A Study of the ministry of health campaign on coronavirus in Saudi Arabia. Journal of International Crisis and Risk Communication Research, 1(1), 27-56. https://doi.org/10.30658/jicrcr.1.1.3
    Amâncio, M. (2017). “Put it in your story”: Digital storytelling in Instagram and Snapchat Stories. (Master’s thesis, Uppsala University, Uppsala, Sweden). Retrieved from
    http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-324812
    Anderson, K. E. (2015). Getting acquainted with social networks and apps: Snapchat and the rise of ephemeral communication. Library Hi Tech News, 32(10), 6–10.
    doi:10.1108/LHTN-11-2015-0076
    Andrews, K., & Caren, N. (2010). Making the news: Movement organizations, media attention, and the public agenda. American Sociological Review, 75(6), 841-866. doi:10.1177/0003122410386689
    Anuar, F., & Ihsanuddin, R. (2016, October 10). The influence of Instagram communication attributes on Generation Y sharing travel photo behaviour. Paper presented at the
    Third International Hospitality and Tourism Conference, Bandung, Indonesia. doi: 10.1201/9781315386980
    Appelman, A., & Sundar, S. S. (2016). Measuring message credibility: Construction and validation of an exclusive scale. Journalism & Mass Communication Quarterly,
    93(1), 59–79. doi: 10.1177/1077699015606057
    ​​Ashcroft, L., & Hoey, C. (2001). PR, marketing and the Internet: Implications for information professionals. Library Management, 22(1/2), 68-74. doi:10.1108/01435120110358952
    Ashforth, B. E., Harrison, S. H., & Corley, K. G. (2008). Identification in organizations: An examination of four fundamental questions. Journal of Management, 34(3),
    325-374. doi:10.1177/0149206308316059
    Ahmadi, M., & Wohn, D. Y. (2018). The antecedents of incidental news exposure on social media. Social Media + Society, 4(2), 1-8. doi:10.1177/205630511877282
    Alaggia, R., & Wang, S. (2020). “I never told anyone until the #metoo movement”: What can we learn from sexual abuse and sexual assault disclosures made through social media? Child Abuse & Neglect, 103, 104312. doi:10.1016/j.chiabu.2019.104312
    Bainotti, L., Caliandro, A., & Gandini, A. (2020). From archive cultures to ephemeral content, and back: Studying Instagram Stories with digital methods. New Media & Society. doi: 10.1177/1461444820960071
    Bandura, A., (1995) Self-efficacy In Changing Societies. Cambridge University Press. doi: https://doi.org/10.1017/CBO9780511527692
    Bandura, A. (2004). Health promotion by social cognitive means. Health Educ Behav, 31(2), 143-164. doi:10.1177/1090198104263660
    Bayer, J. B., Ellison, N. B., Schoenebeck, S. Y., & Falk, E. B. (2016). Sharing the small moments: Ephemeral social interaction on Snapchat. Information, Communication &
    Society, 19(7), 956–977. doi:10.1080/1369118X.2015.1084349
    Belanche, D., Cenjor, I., & Pérez-Rueda, A. (2019). Instagram Stories versus Facebook Wall: an advertising effectiveness analysis. Spanish Journal of Marketing-ESIC, 23(1),
    69-94. doi:10.1108/SJME-09-2018-0042
    Bennett, W. L., & Segerberg, A. (2012). The logic of connective action. Communication and Society, 15(5), 739-768. doi: 10.1080/1369118X.2012.670661
    Baltar, F., Brunet, I. (2012). Social research 2.0: virtual snowball sampling method using Facebook. Internet Research, 22(1), 57–74. doi: https://doi.org/10.1108/10662241211199960.
    Billings, A. C., Qiao, F., Conlin, L., & Nie, T. (2017). Permanently desiring the temporary? Snapchat, social media, and the shifting motivations of sports fans. Communication &
    Sport, 5(1), 10-26. doi: 10.1177/2167479515588760
    Bilandzic, H., & Busselle, R. (2011). Enjoyment of films as a function of narrative experience, perceived realism and transportability. Communications, 36.doi:10.1515/comm.2011.002
    Boczkowski, P., Mitchelstein, E., & Matassi, M. (2017, January 1). Incidental news: How young people consume news on social media. Paper presented at the 50th Hawaii International Conference on System Sciences. 1785–1792. doi: 10.24251/HICSS.2017.217
    Bolton, R. N., Parasuraman, A., Hoefnagels, A., Migchels, N., Kabadayi, S., Gruber, T., . . . Solnet, D. (2013). Understanding Generation Y and Their Use of Social Media: A
    Review and Research Agenda. Journal of Service Management, 24(3), 245-267. doi:10.1108/09564231311326987
    Bolger, R. (2020). How fake bushfire images and misleading maps of Australia are spreading on social media. Retrieved from https://www.sbs.com.au/news/how-fake-bushfire-images-and-misleading-maps-of-australia-are-spreading-on-social-media. (October 28, 2020)
    Brown, J. D. (1986). Evaluations of self and others: Self-enhancement biases in social judgments. Social Cognition, 4(4), 353-376. doi:10.1521/soco.1986.4.4.353
    Braverman, J. (2008). Testimonials versus informational persuasive messages: The moderating effect of delivery mode and personal involvement. Communication Research, 35(5), 1-57. doi:10.1177/0093650208321785
    Bickerstaff, K. (2004). Risk perception research: socio-cultural perspectives on the public experience of air pollution. Environment International, 30(6), 827-840. doi:
    10.1016/j.envint.2003.12.001
    Cai, Z. J. (2017). A Study on User Adoption of" Stories" Based on Facebook and Instagram. (Master’s thesis, National Central University, Taiwan). Retrieved from http://ir.lib.ncu.edu.tw:88/thesis/view_etd.aspURN=104423048104423048
    Cambra, U., Cuesta, V., & Martinez Martinez, L. (2017). Effectiveness of narrative persuasion on Facebook: Change of attitude and intention towards HPV. European
    Journal of Social Sciences Education and Research, 11(2), 100-109. doi: 10.26417/ejser.v11i2.p100-109
    Castells, M. (2012). Networks of outrage and hope - social movements in the Internet age. Cambridge, U.K: Polity.
    Casero-Ripollés, A., Izquierdo-Castillo, J., Doménech-Fabregat, H. (2016). The journalists of the future meet entrepreneurial journalism: Perceptions in the classroom.
    Journalism Practice, 10(2), 286–303. doi:10.1080/17512786.2015.1123108
    Casaló, L. V., Flavián, C., & Ibáñez-Sánchez, S. (2018). Influencers on Instagram: Antecedents and consequences of opinion leadership. Journal of Business Research, 117, 510-519. doi: 10.1016/j.jbusres.2018.07.005
    Cavalcanti, L. H. C. B., Pinto, A., Brubaker, J. R., & Dombrowski, L. S. (2017). Media, Meaning, and Context Loss in Ephemeral Communication Platforms: A Qualitative
    Investigation on Snapchat. Paper presented at the Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing, Portland, Oregon, USA. doi: 10.1145/2998181.2998266
    Carpenter, C. (2010). A Meta-Analysis of the Effectiveness of Health Belief Model Variables
    in Predicting Behavior. Health Communication, 25, 661-669.
    doi:10.1080/10410236.2010.521906
    Chan-Olmsted, S., Rim, H., & Zerba, A. (2013). Mobile news adoption among young adults: Examining the roles of perceptions, news consumption, and media usage. Journalism
    & Mass Communication Quarterly, 90(1), 126-147. doi:10.1177/1077699012468742
    Champion, V. L., & Skinner, C. S. (2008). The Health Belief Model. In K. Glanz, B. Rimer, & K. Viswanath (Eds.), Health behavior and health education: Theory, research, and
    practice. Jossey-Bass, 4th ed.
    Chapin, J. R. (2000). Third-person perception and optimistic bias among urban minority At-Risk Youth. Communication Research, 27(1), 51-81.
    doi:10.1177/009365000027001003
    Chen, T. Y., & Wang, K. T. (2019). The influence of persuasion knowledge, third-person perception, and affect on coping behavior in the Instagram stories feature. Corporate
    Management Review, 39(2), 69-116. doi: 10.3966/102873102019123902003
    Chen, S.-C., Chen, H.-H., & Chen, M.-F. (2009). Determinants of satisfaction andcontinuance intention towards self-service technologies. Industrial Management & Data Systems, 109(9), 1248-1263. doi:10.1108/02635570911002306
    Chen, K.J., & Cheung, H. L. (2019). Unlocking the power of ephemeral content: The roles of motivations, gratification, need for closure, and engagement. Computers in Human
    Behavior, 97(7), 67-74. doi: 10.1016/j.chb.2019.03.007
    Chen, H., & Huang, S. (2017). From Wild Lily, Wild Strawberry to Sunflower: Media Framing of Three Student Movements. (Master’s thesis, National Chiao Tung University, Taiwan). Retrieved from: http://etd.lib.nctu.edu.tw/cgi-bin/gs32/tugsweb.cgi?o=dnctucdr&s=id=%22GT070259
    123%22.&searchmode=basic
    Chu, D. S. C. (2018). Media Use and Protest Mobilization: A case study of Umbrella Movement within Hong Kong schools. Social Media + Society, 4(1), 1-11.
    doi:10.1177/2056305118763350
    Chen, W. C., Chang, H. H., & Huang, S. J. (2016). The coming of networked social movements? Social ties and social media in the Sunflower Movement. Journal of Social Sciences and Philosophy, 28(4), 467-501. Retrieved from
    https://www.AiritiLibrary.com/Publication/Index/1018189X-201612-201612270046-201612270046-467-501
    Chew, C., & Eysenbach, G. (2010). Pandemics in the age of Twitter: Content analysis of
    Tweets during the 2009 H1N1 outbreak. PLoS ONE, 5(11): e14118, 1-13. doi: 10.1371/journal.pone.0014118
    Chia, S. C. (2009). When the East Meets the West: An Examination of Third-Person Perceptions About Idealized Body Image in Singapore. Mass Communication and Society, 12(4), 423-445. doi:10.1080/15205430802567123
    Chung, M., Munno, G. J., & Moritz, B. (2015). Triggering participation: Exploring the effects of third-person and hostile media perceptions on online participation. Computers in Human Behavior, 53, 452-461. doi: 10.1016/j.chb.2015.06.037
    Chung, S., & Cho, H. (2017). Fostering parasocial relationships with celebrities on social media: Implications for celebrity endorsement. Psychology & Marketing, 34(4),
    481-495. doi: 10.1002/mar.21001
    Chung, M. (2018). The message influences me more than others: Social media metrics, third-person perception, and behavioral intentions. Computers in Human Behavior
    91. doi: 10.1016/j.chb.2018.10.011
    Chung, J. E. (2016). A smoking cessation campaign on Twitter: understanding the use of Twitter and identifying major players in a health campaign. Journal of Health Communication, 21(5), 1-10. doi:10.1080/10810730.2015.1103332
    Chong, M., & Choy, M. (2018). The social amplification of haze-related risks on the internet. Health Communication, 33(1), 14–21. doi:10.1080/10410236.2016.1242031
    Choi, J. (2016). Why do people use news differently on SNSs? An investigation of the role of motivations, media repertoires, and technology cluster on citizens` news-related
    activities. Computers in Human Behavior, 54(3), 249-256. doi:
    10.1016/j.chb.2015.08.006
    Choi, D.-H., Yoo, W., Noh, G.-Y., & Park, K. (2017). The impact of social media on risk perceptions during the MERS outbreak in South Korea. Computers in Human
    Behavior, 72, 422-431. doi: 10.1016/j.chb.2017.03.004
    Davison, W. P. (1983). The third-person effect in communication. Public Opinion Quarterly,
    47(1), 1-15. doi: 10.1086/268763
    Davies, M. (2009). Swine flu as social media epidemic: CDC tweets calmly online. Retrieved from
    http://www.nielsen.com/us/en/insights/news/2009/swine-flu-as-social-media-epidemic-cdc-tweets-calmly.html.
    Deuze, M., & Witschge, T. (2017). Beyond journalism: Theorizing the transformation of journalism. Journalism, 19(2), 165-181. doi:10.1177/1464884916688550
    Du, J., Cunningham, R. M., Xiang, Y., Li, F., Jia, Y., Boom, J. A., . . . Tao, C. (2019). Leveraging deep learning to understand health beliefs about the Human
    Papillomavirus Vaccine from social media. npj Digital Medicine, 2(1), 27. doi:10.1038/s41746-019-0102-4
    Duck, J. M., & Mullin, B. A. (1995). The perceived impact of the mass media: Reconsidering the third-person effect. European journal of social psychology, 25(1), 77-93.
    doi:10.1002/ejsp.2420250107
    Dunlop, S., Wakefield, M., & Kashima, Y. (2008). Can you feel it? Negative emotion, risk, and narrative in health communication. Media Psychology, 11(1), 52–75. doi:10.1080/15213260701853112
    Dunlop, S. M., Wakefield, M., & Kashima, Y. (2008). The contribution of antismoking advertising to quitting: Intra-and interpersonal processes. Journal of Health
    Communication, 13(3), 250–266. doi: 10. 1080/10810730801985301
    Dunlop, S. M., Wakefield, M., & Kashima, Y. (2010). Pathways to persuasion: Cognitive and experiential responses to health-promoting mass media messages. Communication Research, 37(1), 133–164. doi: 10.1177/0093650209351912
    Dunne, I. M. (2019). Feature this: understanding Instagram story’s role in museum marketing. (Master’s thesis, University of Washington). Retrieved from: http://hdl.handle.net/1773/43838
    Everett, J. A. C., Colombatto, C., Chituc, V., Brady, W. J., & Crockett, M. (2020). The effectiveness of moral messages on public health behavioral intentions during the COVID-19 pandemic. doi: 10.31234/osf.io/9yqs8
    Ellison, N. B. & Boyd, D. (2013). Sociality through Social Network Sites. In W. H Dutton (Ed.), The Oxford Handbook of Internet Studies (pp. 151-172). Oxford: Oxford
    University Press. doi: 10.1093/oxfordhb/9780199589074.013.0008
    El-Toukhy, S. (2015). Parsing susceptibility and severity dimensions of health risk perceptions. Journal of Health Communication, 20(5), 499-511. doi: 10.1080/10810730.2014.989342.
    Fall, E., Izaute, M., & Chakroun-Baggioni, N. (2018). How can the health belief model and self-determination theory predict both influenza vaccination and vaccination intention? A longitudinal study among university students. Psychology & Health, 33(6), 746-764. doi:10.1080/08870446.2017.1401623
    Finstad, K. A. (2010). Response interpolation and scale sensitivity: evidence against 5-point scales. Journal of Usability Studies archive, 5, 104-110. 
    Freimuth, V. S., & Hovick, S. R. (2012). Cognitive and emotional health risk perceptions among people living in poverty. Journal of Health Communication, 17(3), 303-318.
    doi:10.1080/10810730.2011.626505
    France, L. R. (2018, October 9). Voter registration reportedly spikes after Taylor Swift post. CNN. Retrieved from https://www.cnn.com/2018/10/09/entertainment/taylor-swift- voter-registration/index.html
    Fransen, M. L., Verlegh, P. W. J., Kirmani, A., & Smit, E. G. (2015). A typology of consumer strategies for resisting advertising, and a review of mechanisms for
    countering them. International journal of advertising, 34(1), 6-16. doi:10.1080/02650487.2014.995284
    Folkman, S. (2013). Stress: Appraisal and Coping. In M. D. Gellman & J. R. Turner (Eds.), Encyclopedia of Behavioral Medicine (pp. 1913-1915). New York, NY: Springer
    New York.
    Fox, S. (2011). The social life of health information. Pew Research Center. Retrieved from
    http://www.pewinternet.org/2011/05/12/the-social-life-of-health-information-2011/.
    Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and behavior: An introduction to theory and research. Reading, MA: Addison-Wesley. Retrieved from
    https://www.researchgate.net/publication/233897090_Belief_attitude_intention_and_behaviour_An_introduction_to_theory_and_research
    Fung, T. K., Namkoong, K., & Brossard, D. (2011). Media, social proximity, and risk: A comparative analysis of newspaper coverage of avian flu in Hong Kong and in the
    United States. Journal of Health Communication, 16(8), 889–907. doi:10.1080/10810730.2011.561913
    Fernbach, P. M., Light, N., Scott, S. E., Inbar, Y., Rozin, P. (2019). Extreme opponents of genetically modified foods know the least but think they know the most. National
    Human Behavior, 3(3), 251-256. doi: 10.1038/s41562-018-0520-3
    Fisher, C. (2018). News sources and journalist/source interaction. Oxford Research Encyclopedia of Communication. doi:10.1093/acrefore/9780190228613.013.849
    Garthwaite, C., & Moore, T. J. (2013). Can celebrity endorsements affect political outcomes? Evidence from the 2008 US Democratic Presidential Primary. The Journal
    of Law, Economics, and Organization, 29(2), 355-384. doi:10.1093/jleo/ewr031
    Gerbaudo, P., & Treré, E. (2015). In search of the ‘we’ of social media activism: Introduction to the special issue on social media and protest identities. Information, Communication & Society, 18(8), 865-871.
    doi:10.1080/1369118X.2015.1043319
    Gerhold, L. (2020, March 25). COVID-19: Risk perception and Coping strategies. Results from a Survey in Germany. doi: 10.31234/osf.io/xmpk4
    Gil de Zúñiga, H. (2009). Blogs, journalism and political participation. In Journalism and Citizenship: New Agendas in Communication (ed. by Z. Papacharissi), pp. 108–123.
    Routledge, NY.
    Gleason, B. (2013). #Occupy Wall Street: Exploring informal learning about a social movement on Twitter. American Behavioral Scientist, 57(7), 966-982. doi:10.1177/0002764213479372
    Gonzalez-Bailon, S., Borge-Holthoefer, J., Rivero, A. & Moreno, Y. (2011). The dynamics of protest recruitment through an online network. Scientific Reports, 1(1), 1–7. doi:
    10.1038/srep00197.
    Grainge, P. (2011). Ephemeral Media: Transitory screen culture from television to YouTube. Palgrave Macmillan.
    Green, M. C., & Brock, T. C. (2000). The role of transportation in the persuasiveness of public narratives. Journal of Personality and Social Psychology, 79(5), 701–721.
    doi: 10.1037/0022-3514.79.5.701
    Green, M. C., & Brock, T. C. (2002). In the mind`s eye: Transportation-imagery model of narrative persuasion. In Narrative impact: Social and cognitive foundations. (pp.
    315-341). Mahwah, NJ, US: Lawrence Erlbaum Associates Publishers.
    Green, M. C., & Brock, T. C. (2005). Persuasiveness of narratives. In T. C. Brock & M. C.
    Green (Eds.), Persuasion: Psychological insights and perspectives (2nd ed., pp. 117–142). Thousand Oaks, CA: Sage.
    Guidry, J. P. D., Carlyle, K. E., LaRose, J. G., Perrin, P., Messner, M., & Ryan, M. (2019). Using the Health Belief Model to Analyze Instagram Posts about Zika for Public
    Health Communications. Emerging infectious diseases, 25(1), 179-180. doi:10.3201/eid2501.180824
    Gunther, A. C., & Thorson, E. (1992). Perceived persuasive effects of product commercials
    and public service announcements: Third-person effects in new domains. Communication Research, 19(5), 574-596. doi:10.1177/009365092019005002
    Gunther, A. C., & Mundy, P. (1993). Biased optimism and the third-person effect. Journalism Quarterly, 70(1), 58–67. doi:10.1177/ 107769909307000107
    Gunther, A. C., & Storey, J. D. (2003). The Influence of Presumed Influence. Journal of communication, 53(2), 199-215. doi:10.1111/j.1460-2466.2003.tb02586.x
    Gupta, H., Singh, S., & Sinha, P. (2017). Multimedia tool as a predictor for social media advertising- a YouTube way. Multimedia Tools and Applications, 76(18), 557-568. doi:10.1007/s11042-016-4249-6
    Ha, A. (2015). An experiment: Instagram marketing techniques and their effectiveness.
    Hackett, G., & Lent, R. (1992). Theoretical advances and current inquiry in career psychology. In (pp. 419-452). Wiley.
    Ham, C. D., & Nelson, M. R. (2016). The role of persuasion knowledge, assessment of benefit and harm, and third-person perception in coping with online behavioral
    advertising. Computers in Human Behavior, 62, 689-702.
    doi: 10.1016/j.chb.2016.03.076
    Hampton, K., & Wellman, B. (2003). Neighboring in Netville: How the Internet Supports Community and Social Capital in a Wired Suburb. City & Community, 2(4), 277-311. doi: 10.1046/j.1535-6841.2003.00057.x
    Hansen, D., Shneiderman, B. & Smith, M.A. (2010). Analyzing Social Media Networks with NodeXL: Insights from a Connected World. Morgan Kaufmann, MA. doi: 10.1016/C2009-0-64028-9
    Harrison, J. A., Mullen, P. D., & Green, L. W. (1992). A meta-analysis of studies of the Health Belief Model with adults. Health Educ Res, 7(1), 107-116. doi:10.1093/her/7.1.107
    Hayes, A. F. (2013). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. New York: Guilford.
    Hernández-García, I., & Giménez-Júlvez, T. (2020). Assessment of health information about the prevention of COVID-19 on the Internet. JMIR Public Health and Surveillance, 6(2). doi:10.2196/18717
    Hermida, A. (2012). Social journalism: Exploring how social media is shaping journalism. In
    E. Siapera & A. Veglis (Eds.), The handbook of global online journalism (pp. 309–327). Wiley Blackwell.
    Hermida, A., Lewis, S. C., & Zamith, R. (2014). Sourcing the Arab Spring: A case study of Andy Carvin`s sources on Twitter during the Tunisian and Egyptian Revolutions. Journal of Computer-Mediated Communication, 19(3), 479-499.
    doi: 10.1111/jcc4.12074
    Hu, Y., Manikonda, L., & Kambhampat, S. (2014). What we Instagram: A first analysis of Instagram photo content and user types. In Proceedings of the eighth
    international AAAI conference on weblogs and social media (pp. 595–598). Association for the Advancement of Artificial Intelligence. Retrieved from
    https://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/viewFile/8118/8087
    Holton, A. E., Baek, K., Coddington, M., & Yaschur, C. (2014). Seeking and sharing: Motivations for linking on Twitter. Communication Research Reports, 31(1), 33-40.
    doi:10.1080/08824096.2013.843165
    Howard, P. N., & Hussain, M. M. (2011). The upheavals in Egypt and Tunisia: The role of digital media. Journal of Democracy 22(3), 35-48. doi:10.1353/jod.2011.0041.
    Innes, J. M., & Zeitz, H. (1988). The public`s view of the impact of the mass media: A test of the ‘third person’ effect. European journal of social psychology, 18(5), 457-463.
    doi:10.1002/ejsp.2420180507
    Islam, A. K. M. N., Laato, S., Talukder, M., & Sutinen, E. (2020). Misinformation sharing and social media fatigue during COVID-19: An affordance and cognitive load
    perspective. Technological Forecasting and Social Change, 159, 120201. doi: 10.1016/j.techfore.2020.120201
    Janz, N. K., Champion, V. L., Stretcher, V. J. (2002). The Health Belief Model, In: Glanz. K.,
    Rimer, B.K., Lewis, F.M., (Eds.), Health Behavior and Health Education: Theory, Research and Practice. Jossey-Bass, San Francisco, pp. 45-66.
    Järvinen, J., Ohtonen, R., & Karjaluoto, H. (2016). Consumer acceptance and use of Instagram. Paper presented at the System Sciences (HICSS), 2016 49th Hawaii International Conference.
    Jenkins, H. (2006). Convergence culture: Where old and new media collide. New York University Press.
    Jin, S. A. A., & Phua, J. (2014). Following celebrities’ Tweets about brands: The impact of Twitter-based electronic word-of-mouth on consumers’ source credibility
    perception, buying intention, and social identification with celebrities. Journal of advertising, 43(2), 181-195. doi:10.1080/00913367.2013.827606
    Jou, B., Bhattacharya, S., & Chang, S. F. (2014). Predicting viewer perceived emotions in animated GIFs. In Proceedings of the 22nd ACM international conference on Multimedia. pp. 213-216. ACM.
    Jones-Jang, M., & Kim, J. (2018). Third-person effects of fake news: Fake news regulation
    and media literacy interventions. Computers in Human Behavior, 80. doi: 10.1016/j.chb.2017.11.034
    Johansson, B. (2005). The Third-Person Effect. Nordicom Review, 26(1). doi:10.1515/nor-2017-0248
    Juris, J. (2004). Networked social movements: Global movements for global justice. In (pp. 341-362). doi: 10.4337/9781845421663.00029
    Jung, E. H., Zhang, L., & Nekmat, E. (2020). SNS Usage and Third-person Effects in the Risk Perception of Zika Virus among Singaporean Women. Journal of Health
    Communication, 25(9), 736-744. doi:10.1080/10810730.2020.1840676
    Kaplan, A. M. & Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of social media. Business Horizons, 53(1), 59–68. doi:
    10.1016/j.bushor.2009.09.003
    Kammer, A. (2013). Audience participation in the production of online news: Towards a typology. Nordicom Review, 34, 113–126. doi: 10.2478/NOR-2013-0108
    Kantor, J. & Twohey, M. (2017, October 5). Harvey Weinstein Paid Off Sexual Harassment Accusers for Decades, The New York Times. Retrieved from: https://www.nytimes.com/2017/10/05/us/harvey-weinstein-harassment-allegations.html
    Kasperson, R. E., Renn, O., Slovic, P., Brown, H. S., Emel, J., Goble, R., & Ratick, S. (1988). The Social Amplification of Risk: A Conceptual Framework. Risk Analysis,
    8(2), 177-187. doi: 10.1111/j.1539-6924.1988.tb01168.x
    Kim, H. S., Bigman, C., Leader, A., Lerman, C., & Cappella, J. (2012). Narrative health communication and behavior change: The influence of exemplars in the news on intention to quit smoking. The Journal of communication, 62(3), 473-492.
    doi: 10.1111/j.1460-2466.2012.01644.x
    Kim, Y., & Chen, H.-T. (2016). Social media and online political participation: The mediating role of exposure to cross-cutting and like-minded perspectives. Telematics
    and Informatics, 33(2), 320-330. doi: 10.1016/j.tele.2015.08.008
    Kim, B. (2016). Individual, Technological, Socio-Cultural Factors Affecting Facebook and Instagram Use (Master’s thesis, The University of Alabama). Retrieved from https://ir.ua.edu/handle/123456789/2673.
    ​​King, K. A., Vidourek, R. A., English, L., & Merianos, A. L. (2014). Vigorous physical activity among college students: using the health belief model to assess involvement
    and social support. Arch Exerc Health Dis, 4, 267-79. doi: 10.5628/AEHD.V4I2.153
    Ku, Y. C., Chu, T. H., & Tseng, C. H. (2013). Gratifications for using CMC technologies: A comparison among SNS, IM, and e-mail. Computers in Human Behavior, 29(1),
    226-234. doi: 10.1016/j.chb.2012.08.009
    Larson, H. J. (2018). Politics and public trust shape vaccine risk perceptions. National Human Behavior. 2(5), 316. doi: 10.1038/s41562-018-0331-6
    Lazarus, R. S., & Folkman, S. (1984). Stress, appraisal, and coping. New York, NY: Springer.
    Larsson, A. O. (2017). The news user on social media: A comparative study of interacting with media organizations on Facebook and Instagram. Journalism Studies, 19(2), 2225–2242. doi: 10.1080/1461670X.2017.1332957
    Lee, J., Lee, J., & Park, Y. (2009). Research on the Advertisement Effect of Push Type Mobile Advertisement. Paper presented at the Cooperation and Promotion of Information Resources in Science and Technology, 2009. Fourth International Conference on. doi:10.1109/COINFO.2009.27
    Lee, E., Lee, J. A., Moon, J. H., & Sung, Y. (2015). Pictures speak louder than words: Motivations for using Instagram. Cyberpsychology, Behavior, and Social Networking, 18(9), 552-556. doi:10.1089/cyber.2015.0157
    Lee, C. S., & Ma, L. (2012). News sharing in social media: The effect of gratifications and prior experience. Computers in Human Behavior, 28(2), 331-339. doi: 10.1016/j.chb.2011.10.002
    Lee, F. L. F., Chen, H.-T., & Chan, M. (2017). Social media use and university students’ participation in a large-scale protest campaign: The case of Hong Kong’s Umbrella
    Movement. Telematics and Informatics, 34(2), 457-469. doi:
    10.1016/j.tele.2016.08.005
    Lee, F. L. F. (2015). Social movement as civic education: Communication activities and understanding of civil disobedience in the Umbrella Movement. Chinese Journal of
    Communication. 8(4), 393–411. doi: 10.1080/17544750.2015.1057192
    Lewandowsky, S., Cook, J., Fay, N., & Gignac, G. (2019). Science by social media: Attitudes towards climate change are mediated by perceived social consensus. Memory &
    Cognition, 47(8). doi:10.3758/s13421-019-00948-y
    Leiss, W., Beck, U., Ritter, M., Lash, S., & Wynne, B. (1995). Risk Society, Towards a new modernity. Canadian Journal of Sociology / Cahiers canadiens de sociologie, 19(4),
    544. doi:10.2307/3341155
    Lev-On, A. (2017). The third-person effect on Facebook: The significance of perceived proficiency. Telematics and Informatics, 34(4), 252-260. doi: 10.1016/j.tele.2016.07.002
    Lewis, S. C. (2015). Reciprocity as a Key Concept for Social Media and Society. Social Media + Society, 1(1), 1-2. doi:10.1177/2056305115580339
    Liang, T. P., & Yeh, Y. H. (2011). Effect of use contexts on the continuous use of mobile services: the case of mobile games. Personal and Ubiquitous Computing, 15(2), 187-196. doi: 10.1007/s00779-010-0300-1
    Lim, C. (2008). Social networks and political participation: How do networks matter? Social Forces, 87(2), 961-982. doi:10.1353/sof.0.0143
    Lin, X., Featherman, M., & Sarker, S. (2013). Information sharing in the context of social media: An application of the theory of reasoned action and social capital theory. SIGHCI 2013 Proceedings, 17. Retrieved from https://aisel.aisnet.org/sighci2013/17
    Lin, W. Y., Zhang, X., Song, H., & Omori, K. (2016). Health information seeking in the Web 2.0 age: Trust in social media, uncertainty reduction, and self-disclosure. Computers
    in Human Behavior, 56, 289-294. doi: 10.1016/ j.chb.2015.11.055.
    Liu, X., & Lo, V. H. (2014). Media Exposure, Perceived Personal Impact, and Third-Person Effect. Media Psychology, 17(4), 378-396. doi:10.1080/15213269.2013.826587
    Liu, M., Bi, J., Yang, J., Qu, S., & Wang, J. (2020). Social media never shake the role of trust building in relieving public risk perception. Journal of Cleaner Production, 282,
    1-8. doi: 10.1016/j.jclepro.2020.124442
    Lu, H. P., & Hsiao, K. L. (2007). Understanding intention to continuously share information on weblogs. Internet Research, 17(4), 345-361. doi: 10.1108/10662240710828030
    Lu, J. D. (2020). Decoding the popularity of Instagram Stories: Examining the antecedents and consequences of engagement with Instagram Stories (Master’s thesis, National
    Chengchi University, Taiwan). Retrieved from
    http://nccur.lib.nccu.edu.tw/handle/140.119/128884
    Lyons, M. D., Huebner, E. S., & Hills, K. J. (2016). Relations among personality characteristics, environmental events, coping behavior and adolescents` life satisfaction. Journal of Happiness Studies, 17(3), 1033-1050. doi:10.1007/s10902-015-9630-z
    Macafee, T., & Simone, J. (2012). Killing the Bill Online? Pathways to Young People`s Protest Engagement via Social Media. Cyberpsychology, Behavior, and Social
    Networking, 15(11), 579-584. doi:10.1089/cyber.2012.0153
    Mano, R. S. (2014). Social media and online health services: A health empowerment perspective to online health information. Computers in Human Behavior, 39, 404-412. doi: 10.1016/j.chb.2014.07.032.
    Manzoor, S., & Safdar, A. (2020). Cultivation of fear through media: Analysis to reveal relationship between perception about COVID 19 and socio-economic background
    of media consumers. Review of Economics and Development Studies, 6(2), 217-228. doi:10.47067/reads.v6i2.198
    Marwick, A. E., & Boyd, d. (2014). Networked privacy: How teenagers negotiate context in social media. New Media & Society, 16(7), 1051-1067. doi:10.1177/1461444814543995
    Marken, G. A. (2007). Social media… The hunted can become the hunter. Public Relations Quarterly, 52(4), 9–12. Retrieved from https://login.autorpa.lib.nccu.edu.tw/login?url=https://www-proquest-com.autorpa.lib.
    nccu.edu.tw/scholarly-journals/social-media-hunted-can-become-hunter/docview/222
    400425/se-2?accountid=10067
    McDonald, A. M. & Cranor, L. F. (2010). Americans` attitudes about internet behavioral advertising practices. Paper presented at the Proceedings of the 9th annual ACM
    workshop on Privacy in the electronic society, Chicago, IL.
    McGowan, B., Wasko, M., Steven, B., Miller, R., Freiherr, D., & Abdolrasulnia, M. (2012). Understanding the Factors That Influence the Adoption and Meaningful Use of Social
    Media by Physicians to Share Medical Information. Journal of Medical Internet Research, 14(5), e117. doi:10.2196/jmir.2138
    McWhirter, J. E., & Hoffman-Goetz, L. (2016). Application of the health belief model to U.S. magazine text and image coverage of skin cancer and recreational tanning
    (2000–2012). Journal of Health Communication, 21(4), 424-438.
    doi:10.1080/10810730.2015.1095819
    Menon, G., Raghubir, P., & Agrawal, N. (2006). Health risk perceptions and consumer psychology. SSRN Electronic Journal. doi:10.2139/ssrn.945673
    Miller, H. J., Thebault-Spieker, J., Chang, S., Johnson, I., Terveen, L., & Hecht, B. (2016, March). “Blissfully Happy” or “Ready to Fight”: Varying Interpretations of Emoji.
    259-268. Paper presented at the Tenth International AAAI Conference on Web and Social Media. Cologne, Germany.
    Mou, Y., & Lin, C. A. (2014). Communicating food safety via the social media: The role of knowledge and emotions on risk perception and prevention. Science Communication, 36(5), 593-616. doi:10.1177/1075547014549480
    Moyer-Gusé, E. (2008). Toward a theory of entertainment persuasion: Explaining the persuasive effects of entertainment-education messages. Communication Theory,
    18(3), 407–425. doi: 10.1111/j.1468-2885.2008.00328.x
    Mutz, D. C. (1989). The influence of perceptions of media influence: Third person effects and the public expression of opinions. International Journal of Public Opinion
    Research, 1(1), 3–23. doi: https://doi.org/10.1093/ijpor/1.1.3
    Muntinga, D., Moorman, M., & Smit, E. (2011). Introducing COBRAs: Exploring motivations for Brand-Related social media use. Contributions To Zoology, 30(1), 13-46. doi:10.2501/IJA-30-1-013-046
    Murphy, S. T., Frank, L. B., Moran, M. B., & Patnoe-Woodley, P. (2011). Involved, transported, or emotional? Exploring the determinants of change in knowledge,
    attitudes, and behavior in entertainment-education. Journal of Communication, 61(3), 407-431. doi: 10.1111/j.1460-2466.2011.01554.x
    Nahon, K., & Hemsley, J. (2013). Going Viral. Cambridge, England: Polity Press.
    Napoleoncat. (2020). Instagram users in Taiwan January 2020. Retrieved February 1, 2021, from https://napoleoncat.com/stats/instagram-users-in-taiwan/2020/01
    NewScientist. (2020). Covid-19: the disease caused by a kind of coronavirus which first originated in Wuhan, China in late 2019. Retrieved from https://www.newscientist.com/term/covid-19/ (accessed 2020-10-06)
    Nekmat, E. (2012). Message expression effects in online social communication. Journal of Broadcasting & Electronic Media 56(2), 203-224. doi:10.1080/08838151.2012.678513
    Niederdeppe, J., Shapiro, M. A., & Porticella, N. (2011). Attributions of responsibility for obesity: Narrative communication reduces reactive counterarguing among
    liberals. Human Communication Research, 37(3), 295-323.
    doi: 10.1111/j.1468-2958.2011.01409.x
    Nisbett, G. S., & DeWalt, C. C. (2016). Exploring the influence of celebrities in politics: A focus group study of young voters. Atlantic Journal of Communication, 24(3),
    144-156. doi:10.1080/15456870.2016.1184664
    Nisbett, G., & Schartel Dunn, S. (2019). Reputation matters: parasocial attachment, narrative engagement, and the 2018 Taylor Swift political endorsement. Atlantic Journal of Communication, 29(1), 1-13. doi:10.1080/15456870.2019.1704758
    Nix, J., & Pickett, J. T. (2017). Third-person perceptions, hostile media effects, and policing:
    Developing a theoretical framework for assessing the Ferguson effect. Journal of Criminal Justice, 51, 24-33. doi: 10.1016/j.jcrimjus.2017.05.016
    Norman, D. A. (1988). The psychology of everyday things. Basic Books, New York, NY.
    OECD (2007), Participative web and user-created content: Web 2.0, Wikis and social networking, OECD Publishing, Paris, France. doi: 10.1787/9789264037472-en.
    Oh, S. H., Paek, H. J., & Hove, T. (2015). Cognitive and emotional dimensions of perceived risk characteristics, genre-specific media effects, and risk perceptions: The case of
    H1N1 influenza in South Korea. Asian Journal of Communication, 25(1), 14–32. doi:10.1080/ 01292986.2014.989240
    Okafor, E., Lucier-Greer, M., & Mancini, J. A. (2016). Social stressors, coping behaviors, and depressive symptoms: A latent profile analysis of adolescents in military families. Journal of Adolescence, 51(1), 133-143. doi: 10.1016/j.adolescence.2016.05.010
    Oni, A. A., Oni, S., Mbarika, V., & Ayo, C. K. (2017). Empirical study of user acceptance of online political participation: Integrating Civic Voluntarism Model and Theory of Reasoned Action. Government Information Quarterly, 34(2), 317-328. doi: 10.1016/j.giq.2017.02.003
    Ormrod, J. (2008). Human learning (5th ed.). Upper Saddle River, NJ: Pearson Education.
    Petrescu, M., Gironda, J. T., & Korgaonkar, P. K. (2018). Online piracy in the context of routine activities and subjective norms. Journal of Marketing Management, 34(3-4),
    314-346. doi: 10.1080/0267257X.2018.1452278
    Papacharissi, Z., & Rubin, A. (2000). Predictors of Internet Use. Journal of Broadcasting & Electronic Media, 44(2), 175-196. doi: 10.1207/s15506878jobem4402_2
    Park, T., Ju, I., Ohs, J. E., & Hinsley, A. (2021). Optimistic bias and preventive behavioral engagement in the context of COVID-19. Research in Social & Administrative
    Pharmacy, 17(1), 1859-1866. doi: 10.1016/j.sapharm.2020.06.004
    Pask, E. B., & Rawlins, S. T. (2016). Men`s intentions to engage in behaviors to protect against human papillomavirus (HPV): Testing the risk perception attitude framework.
    Health Communication, 31(2), 139-149. doi: 10.1080/10410236.2014.940670.
    Porlezza, C. (2019). From Participatory Culture to Participatory Fatigue: The Problem With
    the Public. Social Media + Society, 5(3), 1-4. doi:10.1177/2056305119856684
    Piwek, L. & Joinson, A., (2016). “What do they Snapchat about?” Patterns of use in time-
    limited instant messaging service. Computers in Human Behavior, 54, 358-367. doi: 10.1016/j.chb.2015.08.026
    Pennsylvania State University, College of Information Sciences and Technology. (2015). Instagram behavior for teens different than adults. ScienceDaily. Retrieved May
    17, 2021 from www.sciencedaily.com/releases/2015/06/150616155028.htm
    Pfeffer, J., Zorbach, T., & Carley, K. M. (2014). Understanding online firestorms: Negative word-of-mouth dynamics in social media networks. Journal of Marketing
    Communications, 20(1-2), 117-128. doi:10.1080/13527266.2013.797778
    Pavlik, J. (2000). The impact of technology on journalism. Journalism Studies, 1(2), 229–237. doi: 10.1080/14616700050028226
    Phillips, R. L. (2019). #MarchForOurLives: Mobilization of a gun violence prevention movement on Twitter (Unpublished master’s thesis) Texas State University, San
    Marcos, Texas. Retrieved from https://digital.library.txstate.edu/handle/10877/8008
    Raman, P. & Pashupati, T. K. (2004). Online privacy: The impact of self-perceived technological competence. Enhancing Knowledge Development in Marketing, 5(1),
    26-27. Retrieved from https://scholar.google.com/citations?view_op=view_citation&hl=en&user=KKxPsP8
    AAAAJ&citation_for_view=KKxPsP8AAAAJ:W7OEmFMy1HYC
    Reuter, O. J., Szakonyi, D. (2015). Online social media and political awareness in authoritarian regimes. British Journal of Political Science, 45(1), 29–51. doi: 10.2139/ssrn.2148690
    Rho, E., & Mazmanian, M. (2019, September). Hashtag burnout? A control experiment investigating how political hashtags shape reactions to news content. Proceedings of the ACM on Human-Computer Interaction 3(CSCW). doi: 10.1145/3359299
    Rimal, R. N., & Real, K. (2003). Perceived risk and efficacy beliefs as motivators of change: Use of the risk perception attitude (RPA) framework to understand health behaviors.
    Human Communication Research, 29(3), 370-399. doi: 10.1111/j.1468-2958.20 03.tb0 084 4.x.
    Robin, B. R. (2008). Digital Storytelling: A powerful technology tool for the 21st century classroom. Theory Into Practice, 47(3), 220-228. doi:10.1080/00405840802153916
    Romney, M., & Johnson, R. (2018). Show me a story: narrative, image, and audience engagement on sports network Instagram accounts. Information Communication and Society, 23(2), 1-16. doi:10.1080/1369118X.2018.1486868
    Rosenstock, I. M. (1974). The health belief model and preventive health behavior. Health Education Monographs, 2(4), 354-386. doi:10.1177/109019817400200405
    Ross, P. (2012). Were producers and audiences ever separate? Conceptualizing media production as social situation. Television and New Media, 15(2), 157–174.
    Rucinski, D., & Salmon, C. T. (1990). The ‘other’ as the vulnerable voter: A study of the third-person effect in the 1988 U.S. presidential campaign. International Journal of
    Public Opinion Research, 2(4), 345-368. doi:10.1093/ijpor/2.4.345
    Savitri, S., & Irwansyah, I. (2021). The use of Instagram Stories at the age of COVID-19 pandemic. Jurnal ASPIKOM, 6(1), 182. doi: 10.24329/aspikom.v6i1.750
    Scharrer, E., & Leone, R. (2008). First‐person shooters and the third‐person effect. Human Communication Research, 34(2), 210-233. doi: 10.1111/j.1468-2958.2008.00319.x
    Schartel Dunn, S. G. (2018). Parasocial interaction and narrative involvement as predictors of attitude change. Western Journal of Communication, 82(1), 117-133. doi:10.1080/10570314.2017.1339230
    Schmidt, C. (2018, August 9). The Cincinnati Enquirer wrote an audience-driven article using Instagram Stories (and it wasn’t even about a hippo). Nieman Lab. Retrieved from http://www.niemanlab.org
    Schweinsberg, S., McManus, P., Darcy, S., & Wearing, S. (2020). ‘Drought tourism’ as compassion. Annals of Tourism Research, 83, 102843. doi: 10.1016/j.annals.2019.102843
    Schweinsberg, S., Darcy, S., & Beirman, D. (2020). ‘Climate crisis’ and ‘bushfire disaster’: Implications for tourism from the involvement of social media in the 2019–2020
    Australian bushfires. Journal of Hospitality and Tourism Management, 43, 294-297. doi: 10.1016/j.jhtm.2020.03.006
    Seyfi, M. (2017). Instagram Stories from the perspective of narrative transportation theory. The Turkish Online Journal of Design, Art and Communication, 7. doi:10.7456/10701100/005
    Stewart, A. (2020). What`s trending during coronavirus pandemic? A definitive guide to the most used hashtags. The National. Retrieved from https://www.thenationalnews.com
    Steinberg, L., & Morris, A. (2001). Adolescent Development. Annual Review of Psychology, 52, 83-110. doi: 10.1146/annurev.psych.52.1.83
    Stieglitz, S., & Dang-Xuan, L. (2013). Emotions and information diffusion in social media—Sentiment of microblogs and sharing behavior. Journal of Management Information Systems 29(4), 217-248. doi: 10.2753/MIS0742-1222290408
    Sheldon, P., & Bryant, K. (2016). Instagram: Motives for its use and relationship to narcissism and contextual age. Computers in Human Behavior, 58, 89-97. doi: 10.1016/j.chb.2015.12.059
    Sharma, D. K., & Agrawal, H. (2020). Role of social media to awareness for pandemics: special context of COVID-19. UGC Care Group-1 Journal, 23(4),189-202. ISSN: 0975-4520.
    Shanahan, L., Steinhoff, A., Bechtiger, L., Murray, A. L., Nivette, A., Hepp, U., . . . Eisner, M. (2020). Emotional distress in young adults during the COVID-19 pandemic:
    evidence of risk and resilience from a longitudinal cohort study. Psychological Medicine, 1-10. doi:10.1017/S003329172000241X
    Shang, L., Zhou, J., & Zuo, M. (2021). Understanding older adults` intention to share health information on social media: the role of health belief and information processing. Internet research, 31(1), 100-122. doi:10.1108/INTR-12-2019-0512
    Shirky, C. (2011). The political power of social media: Technology, the public sphere, and political change. Foreign Affairs, 90(1), 28-41.
    Signorini, A., Segre, A. M., & Polgreen, P. M. (2011). The use of Twitter to track levels of disease activity and public concern in the U.S. during the influenza A H1N1
    pandemic. PLoS ONE, 6(5), e19467. doi: 10.1371/journal.pone.0019467
    Slater, M. D., & Rouner, D. (2002). Entertainment-education and elaboration likelihood: Understanding the processing of narrative persuasion. Communication Theory, 12(2), 173–191. doi: 10.1111/j.1468-2885.2002.tb00265.x
    Slovic, P. (1987). Perception of risk. Science, 236, 280-285. doi: 10.1126/science.3563507.
    Small, T. A. (2011). What the hashtag?: A content analysis of Canadian politics on Twitter. Information, Communication & Society, 14(6), 872-895. doi:10.1080/1369118X.2011.554572
    Smit, E. G., Van Noort, G., & Voorveld, H. A. M. (2014). Understanding online behavioural advertising: User knowledge, privacy concerns and online coping behaviour in Europe. Computers in Human Behavior, 32, 15-22. doi: 10.1016/j.chb.2013.11.008
    Smith, A. (2009, April 15). The Internet’s role in campaign 2008. Retrieved from: http://www.pewinternet.org/~/media//Files/Reports/2009/The_Internets_Role_in_Campaign_2008.pdf.
    Snyder, L. B., & Rouse, R. A. (1995). The media can have more than an impersonal impact: The case of AIDS risk perceptions and behavior. Health Communication, 7(2), 125–145. doi:10.1207/s15327027hc0702_3
    Snyder, C. R. (1999). Coping: The psychology of what works: Clarendon Press.
    Soffer, O. (2016). The oral paradigm and Snapchat. Social Media + Society, 2(3), 1–4. doi: 10.1177/2056305116666306
    Song, J., Song, T. M., Seo, D. C., Jin, D. L., & Kim, J. S. (2017). Social big data analysis of information spread and perceived infection risk during the 2015 Middle East
    respiratory syndrome outbreak in South Korea. Cyberpsychology, Behavior, and Social Networking, 20(1), 22-29. doi:10.1089/cyber.2016.0126
    Spyridou, L. P., Matsiola, M., Veglis, A., Kalliris, G., & Dimoulas, C. (2013). Journalism in a state of flux: Journalists as agents of technology innovation and emerging news practices. The International Communication Gazette, 75(1), 76–98. doi: 10.1177/1748048512461763
    Stavrositu, C. D., & Kim, J. (2014). Social media metrics: Third-person perceptions of health information. Computers in Human Behavior, 35, 61-67. doi:https://doi.org/10.1016/j.chb.2014.02.025
    Statista. (2018a). Number of monthly active Instagram users from January 2013 to June 2018 (in millions). Retrieved from
    https://www.statista.com/statistics/253577/number-of-monthly-active-instagram-users/
    Statista. (2018b). Number of daily active Instagram Stories users from October 2016 to June 2018 (in millions). Retrieved from https://www.statista.com/statistics/730315/instagram-stories-dau/
    Statista. (2019a). Most famous social networks worldwide as of October 2019, ranked by number of active users (in millions). Retrieved from https://www.statista.com/
    Statista. (2021). Social media use in Taiwan 2020, by platform. Retrieved February 1, 2021, from https://www.statista.com/statistics/966613/taiwan-social-media-use-by-platform/
    Statistic Bureau. (2020). National Statistics, Republic of China (Taiwan). Retrieved February 1, 2021, from https://eng.stat.gov.tw/point.asp?index=9
    Stefanou, E. (2017). Guardian’s Instagram serial strategy engages younger audience. INMA. Retrieve from
    https://www.inma.org/blogs/ideas/post.cfm/guardian-s-instagram-serial-strategy-engages-younger-audience
    Sun, Y., Pan, Z., & Shen, L. (2008). Understanding the third-person perception: Evidence from a meta-analysis. Journal of communication, 58(2), 280-300.
    doi: 10.1111/j.1460-2466.2008.00385.x
    Sun, H. Y. (2020). Research on the effect of Instagram stories advertising (Master’s thesis,
    National Chengchi University, Taiwan). doi:10.6814/NCCU202000403
    Sundet, V. S., & Ytreberg, E. (2009). Working notions of active audiences: Further research
    on the active participant in convergent media industries. Convergence, 15(4),
    383–390. doi: 10.1177/1354856509342339
    Sussman, S., Dent, C., McAdams, L., Stacy, A., Burton, D., & Flay, B. (1994). Group
    self-identification and adolescent cigarette smoking: a 1-year prospective study.
    Journal of abnormal psychology, 103(3), 576-580. doi:10.1037/0021-843X.103.3.576
    Švecová, M. (2017). Journalism on social media: How to tell stories and news to young
    people. Ad Alta: Journal of Interdisciplinary Research, 7(2), 216–218.
    Tamres, L. K., Janicki, D. L., & Helgeson, V. (2002). Sex differences in coping behavior A
    meta-analytic review and an examination of relative coping. Personality and
    Social Psychology Review, 6(1), 2-30. doi: 10.1207/S15327957PSPR0601_1
    Taylor, M., Wells, G., Howell, G., & Raphael, B. (2012). The role of social media as
    psychological first aid as a support to community resilience building. The Australian
    Journal of Emergency Management, 27(1), 20–26.
    Thornton, L. J. (2013). Shared views, social capital, community ties, and Instagram.
    Grassroots Editor, 54(3-4), 19-26.
    Ting, H., Cyril de Run, E., & Liew, S. L. (2016). Intention to use Instagram by generation
    cohorts: The perspective of developing markets. Global Business and Management
    Research: An International Journal, 8(1), 43-55.
    Tourism Australia (2020). Australian bushfire safety Tips. Retrieved from
    https://www.australia.com/en/facts-and-planning/useful-tips/bushfire-safety.html
    Tourism Events Queensland (2020). New marketing campaigns to support bushfire hit regions. Retrieved from
    https://teq.queensland.com/news-and-media/latest-news/new-marketing-campaigns-to-support-bushfire-hit-regions
    Tsoy, D., Tirasawasdichai, T. & Kurpayanidi, K. I. (2021). Role of social media in shaping public risk perception during COVID-19 pandemic: A theoretical review.
    International Journal of Management Science and Business Administration, 7(2),35-41. doi: 10.18775/ijmsba.1849-5664-5419.2014.72.1005
    Tursunbayeva, A., Franco, M., & Pagliari, C. (2017). Use of social media for e-Government in the public health sector: A systematic review of published studies. Government
    Information Quarterly, 34(2), 270-282. doi:https://doi.org/10.1016/j.giq.2017.04.001
    Vázquez-Herrero, J., Direito-Rebollal, S., & López-García, X. (2019). Ephemeral journalism: News distribution through Instagram Stories. Social Media + Society, 5.
    doi: 10.1177/2056305119888657
    Van Doorn, B., Parkin, M., & Bos, A. (2003, January). Laughing, Learning and Liking: The Effects of Entertainment-based Media on American Politics. Paper presented at
    Annual Meeting of the Midwest Political Science Association, Chicago, IL. Retrieved from
    https://www.researchgate.net/publication/281444937_Laughing_Learning_and_Liking_The_Effects_of_Entertainmentbased_Media_on_American_Politics
    Van, B., van der Haak, B., Parks, M., & Castells, M. (2012). The Future of Journalism: Networked Journalism Rethinking Journalism in the Networked Digital Age. International Journal of Communication, 6, 2923-2938. 
    Van Dijck, J. (2013). The culture of connectivity: A critical history of social media. Oxford University Press, NY.
    Valiant, V., & Setiawan, J. (2017). Analyzing factors influencing behavior intention to use Snapchat and Instagram Stories. International Journal of New Media Technology,
    4(2), 75-81. doi: 10.31937/ijnmt.v4i2.783
    Valeriani, A., & Vaccari, C. (2015). Accidental exposure to politics on social media as online participation equalizer in Germany, Italy, and the United Kingdom. New Media &
    Society, 18(9), 1857-1874. doi:10.1177/1461444815616223
    Velev, D., & Zlateva, P. (2012). Use of social media in natural disaster management. Paper presented at ICITE 2012, Hong Kong. Retrieved from
    https://www.researchgate.net/publication/271585520_Use_of_Social_Media_in_Natural_Disaster_Management
    Villaespesa, E., & Wowkowych, S. (2020). Ephemeral storytelling with social media: Snapchat and Instagram Stories at the Brooklyn Museum. Social Media + Society,
    6(1), 2056305119898776. doi:10.1177/2056305119898776
    Voorveld, H., Noort, G., Muntinga, D., & Bronner, F. (2018). Engagement with Social Media and Social Media Advertising: The Differentiating Role of Platform Type. Journal of
    advertising, 47, 1-17. doi:10.1080/00913367.2017.1405754
    Wachyudy, D., & Sumiyana. (2018). Could affectivity compete better than efficacy in describing and explaining individuals` coping behavior: An empirical investigation. The Journal of High Technology Management Research, 29(1), 57-70.
    doi: 10.1016/j.hitech.2018.04.006
    Wajahat, H. (2020). Role of social media in COVID-19 pandemic. The International Journal of Frontier Sciences, 4(2), 59-60. doi: 10.37978/tijfs.v4i2.144
    Wahl-Jorgensen, K. (2009). News production, ethnography, and power: On the challenges of newsroom-centricity. In E. Bird (Ed.), The anthropology of news and journalism: Global perspectives (pp. 21–35). Indiana University Press.
    Walden, K., Schwaab, H., Morris, D. W., & Weissmann, E. (2013). Reviews: Ephemeral media: Transitory screen culture from television to YouTube, literary lost: viewing
    television through the lens of literature, Branding Television, TV critics and popular culture—A history of British Television criticism. Critical Studies in Television: The International Journal of Television Studies, 8(1), 131–139. doi: 10.7227/CST.8.1.10
    Wang, R., Liu, W., & Gao, S. (2016). Hashtags and information virality in networked social movement: Examining hashtag co-occurrence patterns. Online Information Review, 40(7), 850-866. doi:10.1108/OIR-12-2015-0378
    Wang, K. (2019). How the Stories Feature Based on Users’ Diverse Perspectives on Instagram Affects Coping Behavior and Consequent Effects (Master’s thesis, National Taipei University, Taiwan). Retrieved from http://hdl.handle.net/11536/136903
    Wang, S. I. (2017). The political use of social media and civic engagement in Taiwan. Journal of Cyber Culture and Information Society, 32, 83-111.
    doi:10.29843/JCCIS.201701_(32).0004
    Weber, E. (2017). Breaking cognitive barriers to a sustainable future. Nature Human Behaviour, 1(1). doi: 10.1038/s41562-016-0013
    Wei, R., Lo, V. H., & Lu, H. Y. (2008). Third-person effects of health news: Exploring the relationships among media exposure, presumed media influence, and behavioral
    intentions. American Behavioral Scientist, 52(2), 261–277.
    doi:10.1177/0002764208321355
    Wolf, C., & Schnauber, A. (2015). News consumption in the mobile era. Digital Journalism, 3(5), 759-776. doi:10.1080/21670811.2014.942497
    World Health Organization (2020). Coronavirus. Retrieved from
    https://www.who.int/health-topics/coronavirus#tab=tab_2 (accessed 2020-10-09)
    Wise, T., Zbozinek, T. D., Michelini, G., Hagan, C. C., & Mobbs, D. (2020). Changes in risk perception and self-reported protective behaviour during the first week of the
    COVID-19 pandemic in the United States. Royal Society Open Science, 7(9), 1-13. doi:10.1098/rsos.200742
    Witte, K. I. M. (1996). Predicting Risk Behaviors: Development and Validation of a Diagnostic Scale. Journal of Health Communication, 1(4), 317-342. doi:10.1080/108107396127988
    Xia, L. C., & Shen, F. (2018). Political participation in Hong Kong: The roles of news media and online alternative media. International Journal of Communication, 12,1569–1590. Retrieved from https://scholars.cityu.edu.hk/en/publications/publication(a5ddd45b-f49e-4bc1-a961-a70565bed86a).html
    Xu, B., Chang, P., Welker, C., Bazarova, N. and Cosley, D. (2016). Automaticarchiving versus default deletion: What Snapchat tells us about ephemerality in design. Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing.
    Yau, J., & Reich, S. (2018). “It`s just a lot of work”: Adolescents` self-presentation norms and practices on Facebook and Instagram. Journal of research on adolescence, 29(1). doi:10.1111/jora.12376
    Yang, Z. J. (2015). Predicting Young Adults Intentions to Get the H1N1 Vaccine: AnIntegrated Model. Journal of Health Communication, 20, 69 - 79.doi: 10.1080/10810730.2014.904023
    Zhang, C., Fan, C., Yao, W., Hu, X., & Mostafavi, A. (2019). Social media for intelligentpublic information and warning in disasters: An interdisciplinary review.International Journal of Information Management, 49, 190-207.
    doi: 10.1016/j.ijinfomgt.2019.04.004
    Zhao, S., Grasmuck, S., & Martin, J. (2008). Identity construction on Facebook: Digitalempowerment in anchored relationships. Computers in Human Behavior, 24(5),
    1816-1836. doi: 10.1016/j.chb.2008.02.012
    Zhong, Z. J. (2009). Third-person perceptions and online games: A comparison ofperceived antisocial and prosocial game effects. Journal of Computer-Mediated Communication, 14(2), 286-306. doi: 10.1111/j.1083-6101.2009.01441.x
    Zwirz, E. (2018, February 14). Fox News. Retrieved from:
    https://www.foxnews.com/us/parkland-high-school-shooting-at-least-17-killed-suspect-in-custody-florida-sheriff-says
    Description: 碩士
    國立政治大學
    國際傳播英語碩士學位學程(IMICS)
    108461004
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0108461004
    Data Type: thesis
    DOI: 10.6814/NCCU202200375
    Appears in Collections:[International Master`s Program in International Communication Studies] Theses

    Files in This Item:

    File Description SizeFormat
    100401.pdf1129KbAdobe PDF287View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback