政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/139555
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 114012/145044 (79%)
造访人次 : 52075201      在线人数 : 634
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/139555


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/139555


    题名: 重試等候系統的通用解法
    A Generalized Method for Retrial Queueing Systems
    作者: 葉新富
    Yeh, Hsin-Fu
    贡献者: 陸行
    Luh, Hsing
    葉新富
    Yeh, Hsin-Fu
    关键词: 重試等候系統
    截斷方法
    馬可夫過程
    Retrial system
    LDQBDs
    Truncated methods
    Markov processes
    日期: 2022
    上传时间: 2022-04-01 15:04:08 (UTC+8)
    摘要: 我們為不耐煩顧客之重試等候系統的平穩機率提供一個新的上界。如
    果模型滿足某些條件,則會給出更好的上界。以此上界,我們可以用有限
    矩陣計算平穩機率,並用數值實驗驗證論文中提出的定理。此外,我們提
    出了該定理的進一步推廣形式,任何滿足條件的模型都可以應用這個定理。
    We present a new upper bound of the stationary probability of retrial queueing systems with impatient customers. If the model satisfies some conditions, it gives a better upper bound. Furthermore, we can calculate the stationary probability with a finite matrix. Numerical experiments to verify the theorems are presented in the thesis. In addition, we propose a further generalization form of the theorem. Any model satisfying the condition could apply this theorem.
    參考文獻: [1] V.V. Anisimov and J.R. Artalejo. Approximation of multiserver retrial queues by means
    of generalized truncated models. Top, 10(1):51–66, 2002.
    [2] J.R. Artalejo. A classified bibliography of research on retrial queues: progress in 1990–
    1999. Top, 7(2):187–211, 1999.
    [3] J.R. Artalejo and M. Pozo. Numerical calculation of the stationary distribution of the main
    multiserver retrial queue. Annals of Operations Research, 116(1):41–56, 2002.
    [4] H. Baumann and W. Sandmann. Numerical solution of level dependent quasi-birth-anddeath processes. Procedia Computer Science, 1(1):1561–1569, 2010.
    [5] A. Gómez-Corral. A bibliographical guide to the analysis of retrial queues through matrix
    analytic techniques. Annals of Operations Research, 141(1):163–191, 2006.
    [6] B.K. Kumar, R.N. Krishnan, R. Sankar, and R. Rukmani. Analysis of dynamic service
    system between regular and retrial queues with impatient customers. Journal of Industrial
    & Management Optimization, 18(1):267, 2022.
    [7] G. Latouche, V. Ramaswami, and Society for Industrial and Applied Mathematics.
    Introduction to matrix analytic methods in stochastic modeling. Society for Industrial
    and Applied Mathematics, 1999.
    [8] J. Liu and J.T. Wang. Strategic joining rules in a single server markovian queue with
    bernoulli vacation. Operational Research, 17(2):413–434, 2017.
    [9] H.P. Luh and P.C. Song. Matrix analytic solutions for m/m/s retrial queues with impatient
    customers. In International Conference on Queueing Theory and Network Applications,
    pages 16–33. Springer, 2019.
    [10] M.F. Neuts. Matrix-geometric solutions in stochastic models. Johns Hopkins series in the
    mathematical sciences. Johns Hopkins University Press, Baltimore, MD, July 1981.
    [11] E. Onur, H. Deliç, C. Ersoy, and M. Çaǧlayan. Measurement-based replanning of cell
    capacities in gsm networks. Computer Networks, 39(6):749–767, 2002.
    [12] V. Ramaswami and P.G. Taylor. Some properties of the rate perators in level dependent
    quasi-birth-and-death processes with countable number of phases. Stochastic Models,
    12(1):143–164, 1996.
    [13] A. Remke, B.R. Haverkort, and L. Cloth. Uniformization with representatives:
    comprehensive transient analysis of infinite-state qbds. In Proceeding from the 2006
    workshop on Tools for solving structured Markov chains, pages 7–es, 2006.
    [14] J.F. Shortle, J.M. Thompson, D. Gross, and C.M. Harris. Fundamentals of queueing theory,
    volume 399. John Wiley & Sons, 2018.
    [15] P.D. Tuan, M. Hiroyuki, K. Shoji, and T. Yutaka. A simple algorithm for the rate matrices
    of level-dependent qbd processes. In Proceedings of the 5th international conference on
    queueing theory and network applications, pages 46–52, 2010.
    [16] K.Z. Wang, N. Li, and Z.B. Jiang. Queueing system with impatient customers: A review.
    In Proceedings of 2010 IEEE international conference on service operations and logistics,
    and informatics, pages 82–87. IEEE, 2010.
    [17] W.S. Yang and S.C. Taek. M/M/s queue with impatient customers and retrials. Applied
    Mathematical Modelling, 33(6):2596–2606, 2009
    描述: 碩士
    國立政治大學
    應用數學系
    108751006
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0108751006
    数据类型: thesis
    DOI: 10.6814/NCCU202200361
    显示于类别:[應用數學系] 學位論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    100601.pdf559KbAdobe PDF2196检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈