English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51615569      Online Users : 576
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/139473


    Title: Assessing Ischemic Stroke with Convolutional Image Features in Carotid Color Doppler
    Authors: 羅崇銘
    Lo, Chung-Ming
    Hung, Peng-Hsiang
    Contributors: 圖檔所
    Keywords: Acute ischemic stroke;Carotid ultrasound;Convolutional neural networks
    Date: 2021-08
    Issue Date: 2022-03-28 15:59:01 (UTC+8)
    Abstract: Stroke is a leading cause of disability and death worldwide. Early and accurate recognition of acute stroke is critical for achieving a good prognosis. The novel automated system proposed in this study was based on convolutional neural networks (CNNs), which were used to identify lesion findings on carotid color Doppler (CCD) images in patients with acute ischemic stroke. An image database composed of 1032 CCD images from 106 patients with acute ischemic stroke (549 images) and from 79 normal controls (483 images) was retrospectively analyzed. Taking the consensus of two neuroradiologists as the gold standard, different CNN models with and without transfer learning were evaluated with 10-fold cross-validation. The diagnostic information provided from individual color channels was also explored. AlexNet, which was trained from scratch, achieved an accuracy of 91.67%, a sensitivity of 93.33%, a specificity of 90.20% and an area under the receiver operating characteristic curves (AUC) of 0.9432. Other transferred models achieved accuracies between 77.69% and 83.94%. In channel comparisons, the green channel had the best performance, with an accuracy of 87.50%, a sensitivity of 97.78%, a specificity of 78.43% and an AUC of 0.9507. The proposed CNN architecture, as a computer-aided diagnosis system, suggests using automatic feature extraction from CCD images to predict ischemic stroke. The developed scheme has the potential to provide diagnostic suggestions in clinical use.
    Relation: Ultrasound in Medicine and Biology, Vol.47, No.8, pp.2266-2276
    Data Type: article
    DOI 連結: https://doi.org/10.1016/j.ultrasmedbio.2021.03.038
    DOI: 10.1016/j.ultrasmedbio.2021.03.038
    Appears in Collections:[圖書資訊與檔案學研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML2256View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback