English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51629972      Online Users : 552
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/138941
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/138941


    Title: 時間序列特徵學習應用於股票市場預測
    Time Series Representation Learning for Stock Market Prediction
    Authors: 焉然
    Yen, Jan
    Contributors: 蔡炎龍
    Tsai, Yen-Lung
    焉然
    Yen, Jan
    Keywords: 深度學習
    卷積神經網路
    長短期記憶神經網路
    孿生神經網路
    特徵學習
    對比學習
    p進數
    碎形p進位表示法
    股票市場預測
    Deep Learning
    CNN
    LSTM
    Siamese Network
    Representation Learning
    Contrastive Learning
    p-adic Number
    Fractal p-adic Representation
    Stock Market Prediction
    Date: 2021
    Issue Date: 2022-02-10 13:06:52 (UTC+8)
    Abstract: 特徵學習是當今深度學習的熱門議題,但目前大多數的特徵學習都是針對圖像或是自然語言處理。本文嘗試利用特徵學習的方法,對時間序列資料做特徵學習。並以股票資料為主要應用。本文的特徵學習主要採用孿生神經網路做對比學習,以找到最佳的特徵學習函數。我們也嘗試結合以p進數表示的股價資訊的方法來輔助對比學習的訓練。我們發現就股票預測問題而言,利用特徵學習訓練的模型相對於單純的卷積神經網路或是長短期記憶神經網路預測出來的結果穩定,而且結合碎形p進位表示法所訓練出來的結果是最好的。
    Representation learning has become a popular mehthod in deep learning. However, most of applications and researches of it are image recognition or natural language process. In this paper, we try to apply representation learning method to time-series data such as stock. We propose a SiamCL model to implement contrastive representation learning with Siamese network. With this model, our goal is to find the most suitable representation of data. We also combine the fractal p-adic representation to improve the performance of models. We find the fact that SiamCL is rather stable than CNN and LSTM. Moreover, when dealing with extremely imbalanced dataset, SiamCL is more powerful and fractal p-adic representation indeed can improve the performance of models.
    Reference: [1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.
    [2] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is difficult. IEEE ransactions on Neural Networks, 5(2):157–166, 1994.
    [3] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828, 2013.
    [4] Jane Bromley, James W Bentz, Léon Bottou, Isabelle Guyon, Yann LeCun, Cliff Moore, Eduard Säckinger, and Roopak Shah. Signature verification using a“siamese"time delay neural network. International Journal of Pattern Recognition and Artificial Intelligence, 7(04):669–688, 1993.
    [5] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive learning of visual representations. In International conference on machine learning, pages 1597–1607. PMLR, 2020.
    [6] Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 15750–15758, 2021.
    [7] Sounak Dey, Anjan Dutta, J Ignacio Toledo, Suman K Ghosh, Josep Lladós, and Umapada Pal. Signet: Convolutional siamese network for writer independent offline signature verification. arXiv preprint arXiv:1707.02131, 2017.
    [8] Kunihiko Fukushima. Neural network model for a mechanism of pattern recognition unaffected by shift in position-neocognitron. IEICE Technical Report, A, 62(10):658–665, 1979.
    [9] Kunihiko Fukushima, Sei Miyake, and Takayuki Ito. Neocognitron: A neural network model for a mechanism of visual pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics, SMC-13(5):826–834, 1983.
    [10] Fernando Q. Gouvêa. Apéritif, pages 9–30. Springer International Publishing, Cham, 2020.
    [11] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, et al. Bootstrap your own latent: A new approach to selfsupervised learning. arXiv preprint arXiv:2006.07733, 2020.
    [12] R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by learning an invariant mapping. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), volume 2, pages 1735–1742, 2006.
    [13] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9729–9738, 2020.
    [14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.
    [15] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780, 1997.
    [16] Phuc H. Le-Khac, Graham Healy, and Alan F. Smeaton. Contrastive representation learning: A framework and review. IEEE Access, 8:193907–193934, 2020.
    [17] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553): 436–444, 2015.
    [18] Mengchen Liu, Jiaxin Shi, Zhen Li, Chongxuan Li, Jun Zhu, and Shixia Liu. Towards better analysis of deep convolutional neural networks. IEEE transactions on visualization and computer graphics, 23(1):91–100, 2016.
    [19] Xiao Liu, Fanjin Zhang, Zhenyu Hou, Li Mian, Zhaoyu Wang, Jing Zhang, and Jie Tang. Self-supervised learning: Generative or contrastive. IEEE Transactions on Knowledge and Data Engineering, page 1–1, 2021.
    [20] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.
    [21] J. Neukirch. The p-Adic Numbers, pages 155–178. Springer New York, New York, NY, 1991.
    [22] Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Technical report, 1989.
    [23] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal representations by error propagation. Technical report, 1985.
    [24] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-propagating errors. nature, 323(6088):533–536, 1986.
    [25] Attaullah Sahito, Eibe Frank, and Bernhard Pfahringer. Semi-supervised learning using siamese networks. Lecture Notes in Computer Science, page 586–597, 2019.
    [26] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural Networks, 61:85–117, Jan 2015.
    [27] Avraam Tsantekidis, Nikolaos Passalis, Anastasios Tefas, Juho Kanniainen, Moncef Gabbouj, and Alexandros Iosifidis. Forecasting stock prices from the limit order book using convolutional neural networks. In 2017 IEEE 19th Conference on Business Informatics (CBI), volume 1, pages 7–12. IEEE, 2017.
    [28] V. Zharkov. Description of conductivity steps in polymer and other materials by functions of p-adic argument, 2011.
    [29] Victor Zharkov. Adelic theory of the stock market. In Market Risk and Financial Markets Modeling, pages 255–267. Springer, 2012.
    [30] Viktor Zharkov. Multiagent’s model of stock market with p-adic description of prices. arXiv preprint arXiv:1310.8431, 2013.
    Description: 碩士
    國立政治大學
    應用數學系
    105751005
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0105751005
    Data Type: thesis
    DOI: 10.6814/NCCU202200038
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    100501.pdf3159KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback