English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114012/145044 (79%)
Visitors : 52080188      Online Users : 491
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/138940
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/138940


    Title: 漢諾圖上的哈密頓路徑
    Hamiltonian Walks on the Hanoi Graph
    Authors: 呂存策
    CUNCE, LYU
    Contributors: 陳隆奇
    Lung­-Chi Chen
    呂存策
    LYU CUNCE
    Keywords: 漢諾圖
    哈密頓路徑
    漸進表現
    Hanoi graph
    Hamiltonian walk
    Asymptotic behaviour
    Date: 2021
    Issue Date: 2022-02-10 13:06:31 (UTC+8)
    Abstract: 本文給出了 n 階 2 維漢諾圖(又稱漢諾塔圖、河內圖)上哈密頓路徑的數量,其漸進表現是 h(n) ∼ 25×16^n/624 。這類漢諾圖上的哈密頓路徑總數量與起點在最上面的顶點的哈密頓路徑數量的對數的比值漸進至 2。同時,當這類漢諾圖上三個方向的平行邊分別被 x, y, z 這三個數
    加權後,我們也推導出了它們的哈密頓路徑的加權和,其漸進表現為h′(n) ∼(25w*16^n(xyz)^(3n−1))/(16*27*13)其中 w =(x + y + z)^2/(xyz)。
    We’ve derived the number of Hamiltonian walks on the two­dimensional Hanoi graph at stage n, whose asymptotic behaviour is given by h(n) ∼ 25×16^n/624 .
    And the asymptotic behaviour the logarithmic ratio of the number of Hamiltonian walks on these Hanoi graphs with that one end at the topmost vertex is given by 2. When the parallel edges in the three directions on these Hanoi graphs are weighted by three numbers, x, y, z, the weighted sum of their Hamiltonian paths is also derived by us, and the asymptotic behaviour of it is given by
    h′(n) ∼(25w*16^n(xyz)^(3n−1))/(16*27*13) in which w =(x + y + z)^2/(xyz).
    Reference: [1] RM Bradley. Analytical enumeration of hamiltonian walks on a fractal. Journal of Physics A: Mathematical and General, 22(1):L19, 1989.
    [2] Shu­Chiuan Chang and Lung­Chi Chen. Structure of spanning trees on the two­dimensional sierpinski gasket, 2008.
    [3] Shu­Chiuan Chang and Lung­Chi Chen. Hamiltonian paths on the sierpinski gasket, 2009.
    [4] Sunčica Elezović­Hadžić, Dušanka Marčetić, and Slobodan Maletić. Scaling of hamiltonian walks on fractal lattices. Physical Review E, 76(1):011107, 2007.
    [5] Andreas M Hinz, Sandi Klavžar, Uroš Milutinović, and Ciril Petr. The Tower of Hanoi­myths and maths. Springer, 2013.
    [6] Wilfried Imrich, Sandi Klavzar, and Douglas F Rall. Topics in graph theory: Graphs and their Cartesian product. CRC Press, 2008.
    [7] Sandi Klavžar and Uroš Milutinović. Graphs s (n, k) and a variant of the tower of hanoi problem. Czechoslovak Mathematical Journal, 47(1):95–104, 1997.
    [8] Dušanka Lekić and Sunčica Elezović­Hadžić. Semi­flexible compact polymers on fractal lattices. Physica A: Statistical Mechanics and its Applications, 390(11):1941–1952, 2011.
    Description: 碩士
    國立政治大學
    應用數學系
    104751019
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0104751019
    Data Type: thesis
    DOI: 10.6814/NCCU202101772
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    101901.pdf495KbAdobe PDF234View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback