政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/138895
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113873/144892 (79%)
造访人次 : 51930669      在线人数 : 578
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/138895


    题名: 聯邦學習:肺癌生存率預測
    作者: 劉源
    Liu, Yuan
    贡献者: 謝明華
    Hsieh, Ming-hua
    劉源
    Liu, Yuan
    关键词: 聯邦學習
    肺癌
    數據孤島
    Federal learning
    Lung cancer
    Data island
    日期: 2022
    上传时间: 2022-02-10 12:56:26 (UTC+8)
    摘要: 在數據保護愈發嚴格的情勢下,保險公司在遵守數據安全保護的前提下,如何利用更多的數據對於癌症險的出險、費率進行進一步預測。本文探討了一種解決企業之間數據不能相互傳輸的方式:聯邦學習。本文透過預測肺癌的存活率,比較了聯邦學習和傳統機器學習的評估效果。結果發現,聯邦學習在數據不能出本地的情況下,依舊可以達到和傳統機器學習類似的效果。因此,本文認為,聯邦學習可以在保險公司的費率、出險率的預測上提供一種新的思路,幫助保險公司克服所面臨的數據量不足,受到法規限制等問題。
    Under the situation of increasingly strict data protection, it’s important for insurance companies to further predict the risk and rate of cancer insurance with more data. This paper discusses a way to solve the problem that data cannot be transmitted between enterprises—Federated learning. By predicting the survival rate of lung cancer, this paper compares the effects of federal learning and traditional machine learning. The results show that federated learning can achieve the same effect as traditional machine learning when the data must stay in local. Therefore, this paper shows that under the restriction of laws and regulations federal learning can provide a new direction in the prediction of survival rate for insurance companies to overcome the problems of insufficient data.
    參考文獻: 中文部分
    1. 周脈耕,王黎君,黃正京,楊功煥.2002.人口老化及危險因素改變對肺癌死亡率的影響[J]. 中國衛生統計.
    2. 李媛秋, 劉劍君,麼鴻雁 .(2019). "肺癌發病和死亡流行情況与人類發展指數展的關係分析." 中國腫瘤 28(9): 646-650.
    3. 楊強,黃安埠,劉洋,陳田健.(2021).聯邦學習實戰.
    4. 馬立偉, 曾強, 呂秋平, 范成燁, & 程鵬. (2015). 大數据癌症風險預測系统. 世界复合醫學(1), 5.
    5. 衛生福利部中央健康保健署.(2019). 醫療支出費用.
    6. 潘憶文(I-Wen Pan), 簡君儒(Chun-Ru Chien), & 施雅真(Ya-Chen Tina Shih). (2012). 美國癌症登記及老人醫療保險資料庫之發展與應用-論台灣癌症登記與健康保險聯結資料庫之可行性. 台灣公共衛生雜誌, 31(4), 299-310.
    7. Thomas Wetter. (2006). 運用三種資料探勘方法預測子宮頸癌存活情形之比較. 台灣家庭醫學雜誌, 16(3), 192-203.
    8. 胡麗霞, 江長思, 羅燕, 梅東東, 龔靜山, & 馬捷. (2019). 基于機器學習的放射組學 預測肥細小肺癌egfr基因突變. 醫學影像學雜誌, 29(7), 4.
    9. 財團法人保險事業發展中心.(2019). 108年人壽保險業務統計年報.
    10. 王健宗、孔令煒、黃章成、陳霖捷、劉懿、何安珣、肖京. (2020). 聯邦學習算法綜述. 大數據,6(6),19.
    11. 董厶溢.(2020). 基於聯邦學習數據處理方法、裝置、設備及介質與流程 .


    英文部分:
    1. Yang, Q. , Y Liu, Y Cheng, Y Kang, & Yu, H. . (2019). Federated Learning. Morgan & Claypool.
    2. Yang, Q. , Liu, Y. , Chen, T. , & Tong, Y. . (2019). Federated machine learning: concept and applications. ACM Transactions on Intelligent Systems and Technology, 10(2), 1-19.
    3. Liu, Y. , Liu, Y. , Liu, Z. , Zhang, J. , Meng, C. , & Zheng, Y. . Federated forest. IEEE Transactions on Big Data, PP(99), 1-1.
    4. Yang K , Jiang T , Shi Y , et al. Federated Learning via Over-the-Air Computation[J]. 2018.
    5. V Hartmann, Modi, K. , Pujol, J. M. , & West, R. . (2019). Privacy-preserving classification with secret vector machines.
    6. WILD, C. P., E. WEIDERPASS and B. W. STEWART (2020). Cancer Report :Cancer research for cancer prevention.
    7. Huang, L. , & Liu, D. . (2019). Patient clustering improves efficiency of federated machine learning to predict mortality and hospital stay time using distributed electronic medical records. Journal of Biomedical Informatics, 99, 103291-.
    8. Ferlay, Shin, Bray, & Mathers. (2010). Globocan 2008, cancer incidence and mortality worldwide: iarc cancerbase no. 10. International Journal of Cancer Journal International Du Cancer, 136(5), E359–E386.
    9. Xia, Y. , Yang, D. , Li, W. , Myronenko, A. , Xu, D. , & Obinata, H. , et al. (2021). Auto-fedavg: learnable federated averaging for multi-institutional medical image segmentation.
    10. Rehak, D. R. , Dodds, P. , & Lannom, L. . (2005). A model and infrastructure for federated learning content repositories.
    11. Mcmahan, H. B. , Moore, E. , D Ramage, Hampson, S. , & Arcas, B. . (2016). Communication-efficient learning of deep networks from decentralized data.
    12. Peter Kairouz, H.Brendan McMahan, Brendan Avent, & et al. (2019). Advances and open problems in federated learning.
    13. He, H. , & Garcia, E. A. . (2009). Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering, 21(9), 1263-1284.
    14. Ganganwar, V. (2012). An overview of classification algorithms for imbalanced datasets. International Journal of Emerging Technology and Advanced Engineering, 2(4), 42-47.
    描述: 碩士
    國立政治大學
    風險管理與保險學系
    108358029
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0108358029
    数据类型: thesis
    DOI: 10.6814/NCCU202200065
    显示于类别:[風險管理與保險學系] 學位論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    802901.pdf2221KbAdobe PDF20检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈